Thermal-Comfort Design of Personalized Casts

Xiaoting Zhang¹, Guoxin Fang², Chengkai Dai²,

Jouke Verlinden², Jun Wu², Emily Whiting¹, Charlie C.L. Wang²

UIST2017

Traditional Casts

Bulky, poor breathability, molding requires training

Traditional Casts

[Image source: www.drycast.com]

Our Casts

- Daily usage
- Thermal-comfort
- 3D printed

Related Work --- 3D Printed Casts

Related Work --- 3D Printed Casts

[Kim and Jeong 2016]

[Lin et al. 2016]

Design Principles

Thermal-Comfort: Data Acquisition

Thermal-Comfort: Data Acquisition

Thermal-Comfort: Data Acquisition

Thermal-Comfort Sensitivity

index	thermal-comfort
4	very comfortable
2	comfortable
+0	just comfortable
-0	just uncomfortable
-2	uncomfortable
-4	very uncomfortable

thermal-comfort sensitivity

$$C(\mathbf{x}) = \frac{1}{1 + e^{-\alpha \Delta T(x)}}$$

 $\Delta T(x)$: local skin temperature change

lpha : coefficient

[Zhang et al. 2010]

Thermal-Comfort Sensitivity

Voronoi Tessellation

min
$$\hat{E}(\Psi) = E_P(\Psi) + \lambda E_T(\Psi)$$

Pattern control term

Uniform distribution

$$E_P(\Psi) = \operatorname{centroidal Voronoi}_{\text{tessellation}}$$

Voronoi Tessellation

min
$$\hat{E}(\Psi) = E_P(\Psi) + \lambda E_T(\Psi)$$

Thermal term

Thermally sensitive distribution

$$E_P(\Psi) = \begin{array}{c} \text{centroidal Voronoi} \\ \text{tessellation} \end{array}$$

Sensitive to temperature Not sensitive

Voronoi Tessellation

min
$$\hat{E}(\Psi) = E_P(\Psi) + \lambda E_T(\Psi)$$

Thermal term

Thermally sensitive distribution

BOSTON UNIVERSITY

Not sensitive

solid part of cast: Voronoi cell edges

 $E_P(\Psi) = \operatorname{centroidal Voronoi}_{\text{tessellation}}$

 $E_T(\Psi) = \int_{P_\Psi} C(\mathbf{x}) d\mathbf{x}$

Pattern Generation

FEA result for uniform thickening (4mm)

FEA result for non-uniform thickening (4-5mm)

Same weight

Our Casts

Uniform Cast

Our Cast

- office
- raised temperature
- 30 minutes

Uniform Cast • office 38°C 28°C

Our Cast

- raised temperature
- 30 minutes

Uniform Cast

Our Cast

- sauna room
- raised temperature
- 30 minutes

Uniform Cast

Our Cast

Conditions:

- sauna room
- raised temperature
- 30 minutes

38°C

28°C

Uniform Cast

Our Cast

- office
- raised temperature
- 15 minutes

Our Cast

Uniform Cast

Uniform Cast

Conditions:

- office
- raised temperature
- 30 minutes

Our Cast

Uniform Cast

Conditions:

- office
- raised temperature

35°C

25°C

• 30 minutes

Our Cast

UIST2017

UNIVERSITY

Mechanical Verification

Uniform Thickness Cast (U) (4.4mm)

Our Cast (V) (4-6mm)

weight(V) = weight(U)

Displacement (mm)

Participant A – Right Arm

Questionnaire on 5 aspects:

- Q1 --- lightweight
- Q2 --- appearance
- Q₃ --- thermal-comfort
- Q4 --- tactility
- *Q*5 --- *facility*

* facility is an overall assessment of perception with the cast regarding regular activities, itchiness and its resistance to wear and tear 10 8 6 4 2 0 Q2: Q3: Thermal Q4: O1: Q5: Lightweight Appearance comfort Tactility Facility

Questionnaire on 5 aspects:

- Q1 --- lightweight
- Q2 --- appearance
- *Q*₃ --- thermal-comfort
- *Q4* --- *tactility*
- *Q*₅ --- *facility*

* facility is an overall assessment of perception with the cast regarding regular activities, itchiness and its resistance to wear and tear

comfort

Tactility

Lightweight Appearance

comfort

Tactility

Lightweight Appearance

Facility

• Q1 --- lightweight

• Q2 --- appearance

• *Q*4 --- *tactility*

• *Q*5 --- *facility*

Questionnaire on 5 aspects:

- Q1 --- lightweight
- Q2 --- appearance
- *Q*₃ --- thermal-comfort
- *Q4* --- *tactility*
- *Q*5 --- *facility*

* facility is an overall assessment of perception with the cast regarding regular activities, itchiness and its resistance to wear and tear

Heuristic Evaluation

Interview with an orthopedic surgeon

- Improvements
 - Thermal-comfort
 - Custom-fit
- Challenges
 - 3D scanning of injured body
 - Tactile-comfort
 - Post-processing

Doctor Leon Diederix

THANK YOU FOR YOUR ATTENTION!

Email: whiting@bu.edu Web: http://cs-people.bu.edu/whiting/

ACKNOWLEDGEMENTS

- Doctor Leon Diederix
- National Science Foundation (No. 1464267)
- Natural Science Foundation of China (No. 61628211)
- Chinese Scholarship Council

Quebec City, Canada
 October 22-25, 2017

