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Abstract Non-uniform rational B-spline (NURBS) inter-
polator has been widely used in modern manufacturing
systems to machine arbitrary geometries with great re-
lief of the data flow bottleneck and feedrate fluctuation.
However, in practice, real-time feedrate does not always
meet the computer numerical control (CNC) command
exactly subject to the system dynamics. To solve this
problem, we present a real-time NURBS interpolator
with feedrate optimization for CNC machining tools in
this work. The parametric curve is first approximated
with the Adams–Bashforth method which provides uni-
form feedrate in each sampling period in the interpola-
tion process. And then, a feedback scheme is introduced
to adjust the feedrate in real time so as to guarantee a
specified deviation between the measured and the de-
sired feedrate. The convergence condition for this
closed-loop algorithm is presented and analyzed. Simu-
lation and real experiments on an X–Y table are
employed to verify its feasibility. And the comparisons
with traditional interpolators based on Taylor's expan-
sion are also provided to demonstrate its improvement
in accuracy.

Keywords NURBS . Feedrate optimization . Real-time
control . Closed-loop control

1 Introduction

Traditional computer-aided design (CAD) and computer-
aided manufacturing (CAM) systems usually adopt lin-
ear and circular segments which jointed end-by-end as
the modeling tools for free-form profiles. In order to
meet the chord tolerance, complex profiles have to be
divided into small segments, and consequently, the pro-
gram code could swell to enormous size and data trans-
mission load could be greatly increased [1–3]. That
makes the feedrate fluctuation problem seriously and
let the linear and circular interpolation methods be in-
capable to meet the requirements of high-speed and
high-accuracy CNC machining tasks.

To overcome this drawback, a variety of parametric
curves have been applied to parametric interpolation
[4–9]. As a representative parametric means, NURBS
has been widely used in CAD and CAM as it could
provide a uniform representation for analytic shapes and
free-form entities. NURBS has become an industry
standard for profile representation, design, and data
exchange of geometric information. Its particular math-
ematical properties allow a complex contour to be rep-
resented using only a few parameters [10]. Compared
with the traditional linear or circular interpolation meth-
ods, the advantages of NURBS interpolator come from:
(a) segmentation can be avoided, (b) data transmission
load can be reduced, and (c) uniform speed can be
achieved during the interpolation process. Moreover,
NURBS technique has also been applied for chord error
regularity [11], acceleration, and deceleration (ACC/
DEC) planning [12], and representation of machine
dynamic characters [13], etc. In this paper, we put our
concern on the feedrate fluctuation problem in NURBS
interpolator. The determination of feedrate in traditional
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NURBS interpolators are usually open-loop based, and
thus makes the feedrate estimation lack accuracy. To
obtain a constant feedrate during the interpolation pro-
cedure and reduce the feedrate fluctuation, the paramet-
ric curve is approximated with the Adams–Bashforth
method (ABM) [14] firstly. And then, a closed-loop
algorithm is introduced to maintain the feedrate within
a given tolerance range.

The rest of this paper is organized as follows: Related
works of parametric interpolators are briefly reviewed in
Section 2. The NURBS curve and traditional interpolators
are introduced in Section 3. The proposed closed-loop fee-
drate optimization scheme and its convergence condition are
presented and analyzed in Section 4. Experimental results
can be found in Section 5. Conclusion and future works are
offered in Section 6.

2 Related works

Major concerns among different parametric interpolators
mainly focused on following aspects: feedrate, chord
error, ACC/DEC, and jerk. Machining errors are usually
caused by the feedrate fluctuation, inappropriate ACC/
DEC planning, system dynamics, and sharp corners, etc.
In order to reduce the feedrate fluctuation, constant
parametric increment is used in the uniform interpola-
tion algorithm [15]. In [16], a parametric curve interpo-
lator with its corresponded segmentation that based on
uniform curve length rather than uniform parametric
increment is introduced. To calculate the location of
the new sampling point, first order Taylor’s expansion
method is used to achieve a constant feedrate. A con-
tinuous work is presented in [4], which improves the
result by extending Taylor series coefficients into sec-
ond order. To improve the feedrate estimation accuracy,
a first-order approximation algorithm with a compensa-
tory value is introduced in [17]. Then, the proposed
interpolator is applied to the constant-speed mode and
the ACC/DEC mode to achieve constant feedrate. In
[18], high-order terms in the traditional Taylor's expan-
sion method are neglected in calculation of new sam-
pling point. And a feedback loop is presented to reduce
the feedrate fluctuation caused by the truncation error.

To obtain a confined chord error, an adaptive feedrate
interpolation algorithm is presented in [11]. Since the chord
error is related to both feedrate and the radius of curvature, the
feedrate has to be changed adaptively with respect to the
curvature during the interpolation process. Avariable feedrate
interpolator is proposed to apply the ACC/DEC planning
before feedrate interpolation [12]. And the results showed that
the second-order variable feedrate interpolator with bell-shape
ACC/DEC planning function can outperform. In [19], a

method that could detect the sharp corners is proposed by
the use of a look-ahead function. Although the authors declare
that the feedrate can be adjusted adaptively in real time, but no
experimental results are provided. In [20], the sharp corners
are predetermined in an off-line mode. The proposed interpo-
lator can confine the chord error in a specified tolerance and
control feedrate and ACC/DEC of machining during the in-
terpolation process. In [21], a two-stage method is introduced
to decrease the interpolation error. The feedrate is first
lowered to the maximum allowable feedrate that satis-
fies the interpolation error condition. And then, the
kinematical properties generated in the first stage are
improved by using curve look-ahead and acceleration
characteristic equations. A new method that involved
chord error, feedrate, acceleration, and jerk limitations
are presented in [22]. Sampling points are determined at
a look-ahead stage by previewing the curve. Several
models are presented to decide the minimum feedrate
in terms of different kinematic conditions. And then, a
real-time stage is implemented to determine a jerk-
limited kinematic profile. However, a unique represen-
tation for different kinematic conditions is not provided.
A synthesized coordination control algorithm for a bi-
axial tracking control system is introduced in [13]. The
disturbance attenuation scheme is first implemented to
reduce the influence caused by friction and load distur-
bance. And then an enhancement scheme is employed to
reduce contour error and improve both tracking and
contouring performances. However, as pointed out by
the authors, the parameters of machine dynamic charac-
ters should be known as a priori.

3 NURBS interpolator

The explicit function for parametric curve in 3-dimensional
space can be generalized as:

CðuÞ ¼ ðxðuÞ; yðuÞ; zðuÞÞ a � u � b ð1Þ

where u indicates an arbitrary independent parameter which
is usually normalized to [0,1]. A p-th degree NURBS curve
[10] can be defined as:

CðuÞ ¼Pn
i¼0

Ni;pðuÞwiPi=
Pn
i¼0

Ni;pðuÞwi a � u � b ð2Þ

where {Pi} refers to the control points, {wi} are the weights,
and {Ni,p(u)} are the p-th degree B-spline basis functions which
are defined on the non-periodic and non-uniform knot vectorU:

U ¼ fa; . . . ; a|fflfflfflffl{zfflfflfflffl}
pþ1

; upþ1; . . . ; um�p�1; b; . . . ; b|fflfflfflffl{zfflfflfflffl}
pþ1

g
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Ni,p(u) can be defined by the following recursive
formulations:

Ni;0ðuÞ ¼ 1 ui � u < uiþ1

0 otherwise

�
Ni; pðuÞ ¼ u�ui

uiþp�ui
Ni; p�1ðuÞ þ uiþpþ1�u

uiþpþ1�uiþ1
Niþ1; p�1ðuÞ ð3Þ

The m-th derivative of the NURBS with respect to u can
be obtained by:

CðmÞðuÞ ¼
Xn
i¼0

N ðmÞ
i; p ðuÞPi ð4Þ

where the m-th derivative of Ni,p (u) can be expressed as:

N ðmÞ
i; p ðuÞ ¼ p

N m�1ð Þ
i; p�1 ðuÞ
uiþp � ui

� N m�1ð Þ
iþ1; p�1ðuÞ

uiþpþ1 � uiþ1

 !

To reduce the feedrate fluctuation, sampling point is
selected based on uniform curve length ΔSi [16]. As a result,
for a fixed sampling period T, feedrate during each period
keeps constant. Feedrate along NURBS curve can be de-
fined as:

V ðtÞ ¼ ds

dt
¼ ds

du

� �
du

dt

� �
or

du

dt
¼ V ðtÞ

ds=du
ð5Þ

where, ds
du ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0Þ2 þ ðy0Þ2 þ ðz0Þ2

q
, and x0 ¼ dCxðuÞ

du ; y0 ¼
dCyðuÞ
du ; z0 ¼ dCzðuÞ

du . Equation 5 can be rewritten as:

du

dt
¼ V ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0Þ2 þ ðy0Þ2 þ ðz0Þ2
q ð6Þ

It is difficult to obtain the closed-form solution for
Eq. 6, since the representation of C(u) is an infinite
sum. Therefore, an alternative recursive solution based
on Taylor’s expansion method around t0kT can be
adopted as:

ukþ1 ¼ uk þ T
du

dt

����
t¼kT

þ T2

2

d2u

dt2

����
t¼kT

þ "u¼uk ð7Þ

The second-order derivative of u with respect to t can be
denoted as:

d2u

dt2
¼ � V ðtÞ � ðx0 � x00 þ y0 � y00 þ z0 � z00Þ � dudt

ðx02 þ y02 þ z02Þ32
ð8Þ

where x00 ¼ d2CxðuÞ
du2 ; y00 ¼ d2CyðuÞ

du2 ; z00 ¼ d2CzðuÞ
du2

By substituting Eqs. 6 and 8 into Eq. 7, the equation of 3-
dimensional parametric curve interpolator based on the
second-order Taylor’s expansion can be normalized to
Eq. 9 as:

ukþ1 ¼ uk þ TV ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx02 þ y02 þ z02Þp
�����
t¼KT

� T2V 2ðtÞ � ðx0 � x00 þ y0 � y00 þ z0 � z00Þ
2 � ðx02 þ y02 þ z02Þ2

�����
t¼KT

ð9Þ

As shown in Eq. 9, the value of tk+1 sampling pointC(uk+1)
can be calculated by uk and the first- and second-order deriv-
ative of current position C(uk) with respect to the parameter u.
By repeating the above process, a vector of u can be obtained
to determine a parametric curve with its segmentation based
on uniform curve length.

4 ABM-based iterative feedrate optimization

Traditional NURBS interpolators are usually with open-loop
style. And that makes it difficult to maintain a constant
feedrate in manufacturing process [12]. To overcome this
limitation, in this paper, a closed-loop feedrate optimization
method is proposed to calculate uk+1 so as to guarantee the
feedrate fluctuation within a tolerance range. Flowchart of
the proposed scheme is shown in Fig. 1. The systematic
process can be described as follows:

1. uk is used to estimate uk+1 initially by applying the
Adams–Bashforth method;

2. The next sampling point C(uk+1) is determined by the
NURBS curve presentation;

3. The current feedrate is calculated from the adjacent
sampling points;

4. Judge if the deviation between current and desired fee-
drate satisfies a pre-defined feedrate tolerance;

5. If YES, uk+1 is appointed as the next parameter and
C(uk+1) are the next sampling point. Then, the machining
command is sent to CNC machine;

6. If NO, the corrector is started to adjust uk+1. Repeating
steps 1 to 4 until an acceptable feedrate tolerance is
achieved.
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4.1 Feedrate optimization strategy

For simplification, Eq. 6 can be rewritten as:

du

dt
¼ V ðtÞ

ds=du
¼ f ðuÞ ð10Þ

The Adams–Bashforth method is adopted to solve
Eq. 10, and the initial estimation of uk+1 can be expressed
as:

ukþ1 ¼ uk þ T

24
ð�9f ðuk�3Þ þ 37f ðuk�2Þ

� 59f ðuk�1Þ þ 55f ðukÞÞ ð11Þ
where T indicates the sampling period.

For the parameters, u0 is initialized to 0, u1, u2, u3 are
determined by the fourth-order Runge–Kutta method [14] as
given by the following equation:

ukþ1 ¼ uk þ T

6
ðfk1 þ 2fk2 þ 2fk3 þ fk4Þ ð12Þ

where

fk1 ¼ f ðtk ; ukÞ
fk2 ¼ f ðtk þ T

2 ; uk þ Tfk1
2 Þ

fk3 ¼ f ðtk þ T
2 ; uk þ Tfk2

2 Þ
fk4 ¼ f ðtk þ T ; uk þ Tfk3Þ
The following equation is used to obtain a corrected

estimate of uk+1:

unkþ1 ¼ uk þ Vk

vn�1
k

ðun�1
kþ1 � ukÞ ð13Þ

where Vk is the desired feedrate at time tk, and vn�1
k is the

current feedrate after n-1 iterations, which is defined as:

vn�1
k ¼ Cðun�1

kþ1Þ � CðukÞ
�� ��

T
ð14Þ

Let "n�1 ¼ vn�1
k � Vk

�� �� be the feedrate error after n-1
iterations and ε be the pre-defined feedrate tolerance, the
termination condition for the iteration is:

"n�1 � " ð15Þ
To end the iteration, the termination condition must be

met after several times of iteration. In this case, the sampling

period T must be satisfied with the convergence condition,
and it will be presented in the following section.

4.2 Analysis of convergence condition

Convergence of functional iteration requires a tiny step size
T. However, smaller step size increases iteration times and
decreases the computing efficiency. In this section, the con-
vergence condition of the iterative method is analyzed and
discussed.

By subtracting un�1
kþ1 from unkþ1, we can get:

unkþ1 � un�1
kþ1 ¼

Vk

vn�1
k

ðun�1
kþ1 � ukÞ � Vk

vn�2
k

ðun�2
kþ1 � ukÞ ð16Þ

where

unkþ1 ¼ uk þ Vk

vn�1
k

ðun�1
kþ1 � ukÞ

un�1
kþ1 ¼ uk þ Vk

vn�2
k

ðun�2
kþ1 � ukÞ

vn�1
k ¼ Cðun�1

kþ1Þ�CðukÞj j
T

vn�2
k ¼ Cðun�2

kþ1Þ�CðukÞj j
T

Equation 16 can be rewritten as:

unkþ1 � un�1
kþ1 ¼

TVk

Cðun�1
kþ1Þ � CðukÞ

�� �� ðun�1
kþ1 � ukÞ

� TVk

Cðun�2
kþ1Þ � CðukÞ

�� �� ðun�2
kþ1 � ukÞ ð17Þ

Denote h0uk+1-uk, the derivative of C(u) with respect to
u at uk+1 can be defined as:

C0ðukþ1Þ ¼ lim
h!0

Cðukþ1Þ � CðukÞ
h

ð18Þ

Equation 17 can be rewritten as:

unkþ1 � un�1
kþ1 ¼ TVk

1

C0ðun�1
kþ1Þ

�� �� � 1

C0ðun�2
kþ1Þ

�� ��
 !

ð19Þ

Since 1
CðuÞj j is everywhere differentiable and the absolute

value of its derivation is bounded, the Lipschitz condition
[23] can be written as:

1

C0ðun�1
kþ1Þ

�� �� � 1

C0ðun�2
kþ1Þ

�� ��
�����

����� � L1 un�1
kþ1 � un�2

kþ1

�� �� ð20Þ

Fig. 1 Workflow of the
proposed NURBS interpolator
with feedrate optimization
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where L1 indicates the Lipschitz constant which is

defined as the maximum value of d
du

1
C0ðuÞj j with u 2

ukþ1
ðn�2Þ; ukþ1

ðn�1Þ� 	
:

L1 ¼ max
d

du

1

C0ðuÞj j
����

���� ð21Þ

By substituting Eq. 20 into Eq. 19, we have:

unkþ1 � un�1
kþ1

�� �� � TVkL1 un�1
kþ1 � un�2

kþ1

�� �� ð22Þ
By repeating the above process, following equation can

be obtained:

unkþ1 � un�1
kþ1

�� �� � TVkL1 � TVkL2 � . . . � TVkLn�1 u1kþ1 � u0kþ1

�� �� ð23Þ
Let L denotes the maximum value of Li (i01,2,…,n-1),

Eq. 23 can be expressed as:

unkþ1 � un�1
kþ1

�� �� � ðTVkLÞn�1 u1kþ1 � u0kþ1

�� �� ð24Þ
Since u1kþ1 and u0kþ1 are bounded, the sequence u

n
kþ1will

be convergent when TVkL is under the convergence condi-
tion: TVkL <1.

Assume L occurs after n-iteration: d
du

1
C0ðuÞj j

��� ���
u¼unkþ1

, and the

convergence condition is TVk
d
du

1
C0ðuÞj j

��� ���
u¼unkþ1

< 1 , we can

deduce:

T < 1=Vk
d

du

1

C0ðuÞj j
����

����
u¼unkþ1

ð25Þ

Hence, Eq. 25 is the convergence condition for the pro-
posed interpolator. And unkþ1; u

n�1
kþ1 approximate to 0 as n

approaches to ∞. From Eq. 13, the current feedrate vn�1
k

could approach the desired feedrate Vk eventually.

5 Experimental results

The experiments are conducted on both simulation data and
an X–Y table. The results are evaluated via accuracy and
efficiency in comparison with traditional NURBS interpola-
tors. Figure 2 shows a NURBS tool path with its control
points, weight vector, and knot vector are given as:

Control points:

{(0, 0), (−100, −100), (−100, 100), (0, 0), (100, −100),
(100, 100), (0, 0)};

Weight vector:

{5, 5, 10, 1, 10, 5, 5};

Knot vector:

{0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1}.

The length of the tool path is S0679.523 mm, which is
calculated by Simpson’s rule [23] and the sampling period is
set to T00.008 s according to Eq. 25. Other parameters of
the interpolator are set as follows:

The maximum feedrate: V0100 mm/s;
Acceleration: A0150 mm/s2;
Feedrate tolerance: ε03 mm/s.

5.1 Experiment with simulation data

With above parameters, total interpolation time is calculated
to 7.462 s. Table 1 shows the simulation results by NURBS
interpolators with first- and second-order Taylor’s expan-
sion method and the result by the proposed method. From
the results, we can see that with the proposed method, the
feedrate fluctuation ranges from −1.351 to 1.720 mm/s,
which can be controlled within the pre-defined feedrate
tolerance and much smaller than that obtained by the Tay-
lor's expansion methods.

The feedrate profiles and feedrate errors are plotted in
Fig. 3. From the results, we can see that the proposed
method can outperform distinctly than traditional NURBS
interpolators. Constant feedrate with a much smaller fee-
drate error can be achieved via the proposed feedrate opti-
mization method.

-150 -100 -50 0 50 100 150

-100

-50

0

50

100
NURBS curve
Control points
Control polygon

Fig. 2 Contour profile represented by NURBS curve

Table 1 Simulation results by three interpolators (millimeters per
second)

1st-order
Taylor’s
expansion

2nd-order
Taylor’s
expansion

Our
method

Feedrate error peek 5.530 3.475 1.720

Feedrate error valley −6.379 −4.557 −1.351
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5.2 Real experiment with an X–Y table

An experimental system is implemented to verify the real-
time performance of the proposed interpolator. Figure 4
shows the experimental setup which is developed on an X–
Y table controlled by a motion control board with a TI
TMS320F2812 DSP. Grating measurements are used to
detect transient position of the X–Y table. Transient feedrate
on X and Y directions can be calculated respectively by the
transient position. Note that the pitch of screw is 16 mm in
each direction. The X–Y table is driven by two DC servo
motors and each motor performs a resolution of 4,000 steps
per revolution.

By the proposed algorithm, the number of interpola-
tion steps is around 1,400 and the average step length is

about 5×10−3 mm. The contour error and feedrate error
is used to evaluate the performance of the algorithms.
As shown in Fig. 5, the obtained contour by our algo-
rithm can fit the desired contour very closely. Some
cropped areas are provided for close observation. Inter-
polation methods using the first- and second-order Tay-
lor’s expansion algorithm are also implemented to
provide comparative results as shown in Table 2. By
using the first and second order of Taylor's expansion
methods, the maximum contour error is 0.710 and
0.465 mm, respectively. In contrast, our proposed meth-
od performs 0.165 mm, which is the lowest among
them. Specifically, the maximum feedrate error reaches
7.752 and 6.343 mm/s for the first and second order of
Taylor's expansion method, respectively. In comparison,
feedrate of our proposed method maintains relatively
stable, and the maximum feedrate error is only about
3.212 mm/s.
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Fig. 3 Feedrate profiles and errors via simulation test. a Results by
first-order Taylor's expansion method; b results by second-order Tay-
lor's expansion method; c results by the proposed method

Fig. 4 The X–Y table used for real experiment
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Fig. 5 Desired contour (dashed line) and resulting contour (solid
lines) with the proposed method
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Contour error and feedrate profile by the three interpola-
tors are plotted in Fig. 6. From the results, we can see that
the contour error remains at a much lower range by the
proposed method than that by the first and second order of
Taylor's expansion methods. Moreover, by the proposed
method, feedrate fluctuation can be distinctly decreased in
comparison with the Taylor's expansion methods.

6 Conclusion and future work

In this paper, a novel feedrate optimization algorithm for
real-time NURBS interpolation is proposed. The Adams–
Bashforth method (ABM) is used to calculate the initial
position of the target sampling point, and current feedrate
can be obtained with reference to the adjacent sampling
points. A closed-loop optimization scheme is introduced to
adjust the parameters of the target sampling point so as to
keep the deviation between current and desired feedrate
within a pre-defined tolerance. The convergence condition
for the closed-loop feedrate optimization algorithm is also
presented and analyzed. Simulation and real experiments are
conducted to show that our proposed method could achieve
higher accuracy than the traditional NURBS interpolators
such as the first- and second-order Taylor's expansion meth-
ods. Future work can address how to integrate other error
decreasing schemes such as chord error reduction, ACC/
DEC planning, and system dynamic characters analysis into
the proposed optimization method so as to further improve
its performance.
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Fig. 6 Contour error and feedrate profile by the methods of a first-
order Taylor's expansion, b second-order Taylor's expansion, and c the
proposed method

Int J Adv Manuf Technol (2012) 62:1273–1280 1279



12. Cheng CW, Tsai MC (2004) Real-time variable feed rate NURBS
curve interpolator for CNC machining. Int J Adv Manuf Technol
23:865–873

13. Wang X, Liu N, Wang M (2011) Research and implementation of
high-precision biaxial tracking control system based on NURBS
interpolator. Int J Adv Manuf Technol 52:255–262

14. Yang WY, Cao W, Chung TS, Morris J (2005) Applied numerical
methods using MATLAB. Wiley-Interscience, Hoboken, New
Jersey

15. Bedi S, Ali I, Quan N (1993) Advanced interpolation techniques
for CNC machines. ASME J Eng Ind 115(3):329–336

16. Shpitalni M, Koren Y, Lo CC (1994) Realtime curve interpolators.
Comput Aided Des 26(11):832–838

17. Yeh SS, Hsu PL (1999) The speed-controlled interpolator for
machining parametric curves. Comput Aided Des 31(5):349–
357

18. Lo CC (1997) Feedback interpolators for CNC machine tools.
ASME J Manuf Sci Eng 119(4):587–592

19. Yan CL, Du DS, Li CX (2007) Design of a real-time adaptive
interpolator with parameter compensation. Int J Adv Manuf Tech-
nol 35:169–178

20. Yong T, Narayanaswami R (2003) A parametric interpolator with
confined chord errors, acceleration and deceleration for NC ma-
chining. Comput Aided Des 35:1249–1259

21. Park J, Nam S, Yang M (2005) Development of a real-time trajec-
tory generator for NURBS interpolation based on the two-stage
interpolation method. Int J Adv Manuf Technol 26:359–365

22. Lai JY, Lin KY, Tseng SJ, Ueng WD (2008) On the development
of a parametric interpolator with confined chord error, feedrate,
acceleration and jerk. Int J Adv Manuf Technol 37:104–121

23. Iserles A (2009) A first course in the numerical analysis of differ-
ential equations. Cambridge University Press, New York

1280 Int J Adv Manuf Technol (2012) 62:1273–1280


	An iterative feedrate optimization method for real-time NURBS interpolator
	Abstract
	Introduction
	Related works
	NURBS interpolator
	ABM-based iterative feedrate optimization
	Feedrate optimization strategy
	Analysis of convergence condition

	Experimental results
	Experiment with simulation data
	Real experiment with an X–Y table

	Conclusion and future work
	References


