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Abstract—This paper describes an adaptive grid-point detector 
for the feature detection task in a pseudo-random structured 
light pattern. In the algorithm, a local entropy map is firstly 
constructed to evaluate the distribution of the projected 
pattern elements in the captured image. A mask in the shape of 
a cross is then used for the preliminary detection of grid-point 
candidates. With reference to the entropy map, the size of the 
cross mask can be determined adaptively. With considering the 
local symmetry property around the grid-points, a correlation 
procedure is then introduced for the final grid-point 
localization with sub-pixel accuracy. Experiments on real 
human face and comparison with previous methods are used to 
demonstrate its high performance. 
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I.  INTRODUCTION  
Structured light system (SLS) using single pseudo-

randomly coded pattern offers an efficient and affordable 
solution for dynamic 3D reconstruction [1]. Main advantage 
of such SLS is that it can finish the coding and decoding 
procedure via single projection and image capture. In its 
coding strategy, pseudorandom array or M-array [2] is the 
mostly used. Centroids of pattern elements are usually 
defined as the pattern features and then encoded by its 
surrounding pattern elements. The performance of the 
system is however limited by how accurately the feature 
points can be extracted from the image data.  

Feature extraction is usually the first step of many visual 
reconstruction mechanisms including stereo vision and 
structured light systems, and a number of feature detectors 
have been proposed. The most widely used feature detectors 
in the literature are the LoG [3], Harris [4], and SUSAN [5] 
operators. In Harris detector, the second derivative of the 
Moravec’s SSD (Sum of Squared Differences) [6] with 
respect to the shift is calculated for the corner detection. 
SUSAN (Smallest Univalue Segment Assimilating Nucleus) 
operator is another popular used feature detector. In the 
method, each image point p (of say grey level g) is 
associated with a local circular region C (of a certain radius 
r) centered at p. In C, the image points which have similar 
brightness as that of p will form a region named as USAN 
(Univalue Segment Assimilating Nucleus). The area of 
USAN is defined as the number of image points it contains. 
From the area, centroid, and second moments of each 
USAN, corners and edges in the image can be detected 

using non-maximal suppression over the map. In [7], a 
corner detector is constructed based Hough transform. In [8], 
eigenvectors of covariance matrices and one-dimension 
wavelet transform is proposed to detect true corner and 
avoid false alarms on circular arcs. Rosten and Drummond 
[9] developed a FAST method which performs efficient 
corner detection at high speed. Simple thresholding method 
is used to judge the dark and bright areas in a circle around a 
candidate corner and that make it lack of robustness against 
complex illumination and surface texture. Generally, such 
image intensity based corner detectors are inapplicable to 
the pattern feature detection task in SLS since the 
projected pattern elements are usually disconnected in the 
captured image due to projector-camera system’s optical 
ability, e.g. MTF(Modulation Transfer Function), DOF 
(Depth of Field), sensor noise, surface textured and 
projective distortions etc. There are also some specialized 
methods for checkerboard-like corner extraction. In [10], the 
corners are firstly detected in the image using Harris corner 
detector. Such feature points then go through Delaunay 
triangulation to partition the image into triangular patches. 
Pairs of neighboring triangles are subsequently combined 
into quadrilaterals and a topological filter is then used to 
construct regular grids for the grid-point localization. In [11], 
a grid-point detector is constructed based on the 
characteristics of local intensity and the grid-line 
architecture of the planar checkerboard pattern image. But 
it’s heavily dependent on the segmentation result of the 
pattern features. Simple threshold method is applied for the 
segmentation of pattern elements, which makes it 
particularly sensitive to albedo variation, uneven 
illumination, image noise and image blur etc.  

In our previous work, a two-fold symmetry based grid-
point detector has been proposed for the feature detection of 
a pseudorandom color pattern [12]. In the operator, local 
geometrical property but not image intensity is used and that 
makes it with strong robustness against projective distortion, 
surface texture and image noise and blur. However, the 
proposed grid-point detector may ineffective to the 
projection regions with big distortions because of its fixed 
parameters. In this work, we will introduce an improved 
grid-point detector with adaptive parameter determination.  

The paper is organized as follows. Section 2 introduces 
the underlying principle of the proposed adaptive grid-point 
detector. Extensive experiments including the comparison 
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with previous algorithms and the grid-point detection result 
on human face are given in Section 3.  Conclusion and future 
work can be found in Section 4. 

II. ADAPTIVE GRID-POINT DETECTOR 
The structured light pattern is generated from a 

pseudorandom array of size 65×63 as shown in Fig. 1. By the 
property of the pattern, every window of size 2×3 in the 
pattern is unique upon the colored elements the window is 
composed of. Since the pseudorandom array is constructed 
over GF(4) (Galois Field with 4 elements), we use 4 different 
colors (Red, Green, Blue, and Black) each of which is 
seemed as one pattern element for the foreground in the 
pattern, and the white color is used as the background color. 
While the traditional methods use the centroids of pattern 
elements as the feature points, in our system we use the grid-
points between the neighboring rhombic elements as the 
feature points. 

 
Figure 1. The pseudorandom pattern consists of 65×63 rhombic elements 
colored in Red, Green, Blue and Black. Grid-point between pattern elements 
is defined as the pattern feature and then encoded. 

The proposed adaptive grid-point detection method can 
be summarized into the following steps: 

a) Compute the local entropy distribution over the 
whole image with a given window size.  

b) Decide the cross mask size according to the value in 
the entropy map, and then calculate the difference of the 
cross section intensity to get preliminary grid-point. 

c) Calculate the symmetry characteristic around the 
grid-point candidates and then use the weighted correlation 
coefficient to refine the grid-point position to sub-pixel 
accuracy.  

A. Construction of Local Entropy Map 
The idea behind local entropy method is to divide the 

target image into various regions and then to analyze each 
region separately as information source. In Shannon’s 
information theory [13], entropy is a measure of the 
uncertainty associated with a random variable. The entropy 
of a random variable is defined in terms of its probability 
distribution and can be shown to be a good measure of 

randomness or uncertainty. In image processing, local 
entropy can be derived from the ordering of the pixels 
intensity distribution and a measure of information 
containing in an image. Local entropy which reflecting the 
chaos of an image could be used to illustrate the pattern 
deformation type – compression, stretch or original shape. 
For two image regions which have the same size, the 
compressed one contains more pattern elements than the 
stretched one. In the sense of image entropy, compressed 
image regions contain more pattern elements and produce a 
higher entropy value accordingly. The entropy of an image 
with size M×N can be defined as: 
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where I indicates the intensity at image position (i, j), Pij is 
the distribution probability of image intensity at (i, j), E 
describes the entropy values within the M×N image region. 
With reference to E in different image regions, a cross mask 
with various sizes can be implemented for the grid-point 
preliminary detection.  

B. Adaptive Cross Mask for Grid-Point Filtering  
At grid-point position, the difference of cross section 

intensity could reach to a relatively high score. A cross shape 
mask is employed to measure the differences between the 
colored elements and the white elements along the cross arm. 
Normally, the cross mask size can be decided in advance 
based on the rhombic size of the pattern and the resolution of 
the camera. However, when the rhombic patterns are 
projected to an object with high curvature surface, the size-
fixed cross mask may lead to an awful result. For regions 
being compressed, the routine size of cross mask may cross 
over more than two rhombic elements, on the other hands. 
For stretched regions, intensity from grid-point to pattern 
elements varies comparatively slowly, i.e. intensity 
difference between pixels is relative small. The routine cross 
mask is not able to contain enough information to distinguish 
the potential grid-point position. Therefore an adaptive cross 
mask is adopted here as shown in Fig. 2.  

To determine the size of cross mask for various image 
regions, the local entropy value from last section is 
introduced to this step. Local entropy value at a pixel could 
not determine neither if it is a grid-point nor the deformation 
type. As a result, the summation value of local entropy in a 
square window whose size is decided by the local entropy 
window size and centered at every pixel is calculated firstly. 
By the summation value, the cross mask size could be 
controlled in inverse proportion robustly. Then a cross mask 
is employed on every pixel to calculate the intensity along x- 
and y-directions in the image.  
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Once the size of the cross mask at I(i, j) has been decided, 
the difference of the intensity dp along cross section can be 
expressed as: 
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where Lp indicates the length of the cross arm centered at 
image point P. When the value of dp is larger than a pre-
specified threshold, the current position P is regarded as a 
grid-point candidate.  

C. Grid-Point Extraction with Sub-Pixel Accuracy  
From Fig. 1, it can be observed that any grid-point on the 

pattern generation plane of the projector then has a local 
circular neighborhood presenting perfect two-fold symmetry, 
in the sense that the circular window of intensity values 
overlaps exactly with the 180° rotation of itself in the image 
domain. Such symmetry is quasi-invariant against 
perspective distortion, image noise and blurs for the reason 
that linearity of the edge segment that divides the circular 
disc into two symmetrical halves can be preserved. If the 
circular disc is sufficiently small, even nonzero-curvature of 
the target surface in 3D has little effect to the symmetry, as 
locally at the location of the grid-point the object surface can 
be regarded as largely planar. To summarize, the two-fold 
symmetry of grid-point on the illumination side is largely 
preserved in the image data. This symmetry is what we 
exploit in precisely localizing the grid-points in the image. 

Define W as the intensities in a circular window centered 
at grid-point candidate position P, and M the intensities 
under the window created by rotating W by 180° around P. 
By the definition of PMCC [14], the Pearson correlation can 
be expressed as: 
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where Np is the size of the window which is derived from the 
pre-processing step, setting to be equal to the length of the 
cross mask Lp, W  and M indicate the average of all 
elements in the window and the rotated window respectively. 
The grid-point candidate whose correlation coefficient rp is 
larger than a threshold would be kept as grid-point candidate 
for further processing. 

Firstly, the whole grid-point candidates are divided into 
several clouds according to its eight-connectivity, and for 
each cloud, sub-pixel position mean C  is calculated. 
Secondly, a small square region of size C CL L'  centered at 
C  is applied. The true grid-point is then computed in sub-
pixel accuracy as the weighted mean of all grid-points in this 
square region, with the weight being the value of Cir  at each 
position Ci  in the region: 
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Since quasi-invariant local structure rather than raw 
image intensity at the grid-point is used, the described 
method has stronger robustness than intensity or gradient-
based methods against image noise, blur, surface texture, 
curvature, and projective distortion etc., and can produce 
more accurate grid-point position as well.  

III. EXPERIMENTAL RESULTS  
The structured light system in our experiments consists 

of a DLP projector of resolution 1024×768 pixels and a 
DSLR camera of resolution 1500×1000 pixels, both being 
off-the-shelf equipments.  

The first experiment is conducted on a spherical object as 
shown in Fig. 3(a), and its local entropy graph is showed in 
Fig. 3(b). The local entropy window is set to be the value of 
7×7 pixels. From the result, we can see that the entropy value 
changes accordingly to the distribution of rhombic elements. 
For example, in the left image part, pattern elements are 
compressed. As a result, higher entropy values are produced. 

     
    (a)                                                          (b) 

Figure 3. (a) A sphere with color pattern projection.  (b) Local entropy map 
generated with the window size of 7×7 pixels. 

  

a) (b) 

Figure 2. Different cross mask for various deformed images. (a) Smaller 
cross mask size for the compressed regions; (b) Bigger cross mask size are 
used for the stretched regions. 
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(a) (b) (c) 

Figure 4. Grid-points detection results on the image of a sphere with color rhombic pattern projection by three methods: (a) Harris corner detector; (b) 
SUSAN corner detector; (c) the proposed method. 

For comparison, Harris and SUSAN detectors are used 
for the grid-point detection as shown in Fig. 4. From the 
result, we can see that these two operators failed to discover 
the right grid-points not to say their localization accuracy. 
Fig. 5 shows the comparison between the proposed adaptive 

grid-point detector and the original detector in [12]. In this 
application, according to the resolution of both projector and 
camera, the cross mask size is arranged from 1 to 8 pixels. 
From the result, we can see that by the proposed algorithm 
most grid-points at compressed and stretched regions can be 
detected correctly with higher accuracy. 

Fig. 6 shows the experiment on a real human face. From 
the result, we can see that most grid-points can be extracted 
correctly even under the influence of surface color and shape 
variation.   

 

IV. CONCLUSION AND FUTURE WORK 
In this article, we have presented an adaptive grid-point 

detector for the feature detection task in a rhombic 
pseudorandom structured light pattern. In the algorithm, a 
local entropy map is firstly constructed to evaluate the 
distribution of the projected pattern elements. With 

 
 

(a) (b) 
  

(c) (d) 

Figure 5. Comparison of gird-point detection results between previous work 
and the proposed method. (a), (c) Result by previous method on the 
compressed and stretched region. (b), (d) Result by the proposed detector on 
the compressed and stretched region. The incorrect and missed grid-points 
are marked in (a) and (c) by circles and stars. 

 

Figure 6. Grid-point detection result on a real human face with pattern 
illumination.  
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reference to this entropy map, the size of the cross mask can 
be adjusted adaptively. With considering the local symmetry 
property around the grid-point, a correlation procedure is 
introduced for the grid-point extraction in sub-pixel 
accuracy. The detector uses structure, not raw image 
intensities of the image, and is thus more robust against 
albedo variation, uneven illumination, and image noise. In 
the experiment, by comparison, the proposed detector can 
outperform previous operators in a large scale even big 
distortion exists. Promising results are also obtained with 
the experiment on a real human face.  

The future work can address the optimization of the 
algorithm, and put the system into real-time and practice. 
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