
52 January/February 2014 Published by the IEEE Computer Society 0272-1716/14/$31.00 © 2014 IEEE

Feature Article

Highly Parallel Algorithms
for Visual-Perception-Guided
Surface Remeshing
Lianping Xing, Xiaoting Zhang, Charlie C.L. Wang, and Kin-Chuen Hui ■ Chinese University of Hong Kong

Computer graphics applications often em-
ploy polygon meshes to represent 3D geo-
metric shapes. Methods to create meshes

include using modeling software and 3D range
scans. However, owing to these methods’ limi-
tations, the resulting meshes’ quality might be

unsatisfactory, even if they cap-
ture 3D shapes accurately. Some
meshes might even contain de-
fects such as gaps, holes, and
self-intersecting triangles.

Remeshing is usually employed
to improve the geometry’s qual-
ity and the mesh’s connectivity.
Researchers have devised many
remeshing approaches that gen-
erate a point distribution cap-
turing the underlying model’s
characteristics. These approaches
produce different patterns (for
example, through uniform sam-
pling, curvature-adapted sam-

pling, and Poisson disk sampling). However, most
of them use sequential algorithms and take tre-
mendous time to compute. They also have difficulty
exploiting GPUs’ computational power.

To improve remeshing, we propose exploiting hu-
man visual-perception cues. Research has shown
that you can greatly enhance complex 3D models’
comprehensibility by guiding users’ attention to vi-
sually salient regions.1 Owing to visual-perception
techniques’ efficient visual persuasion in traditional
art and technical illustration, they’ve been widely

used in many computer graphics applications, in-
cluding feature extraction and shape matching.2
However, until now, no visual-perception-guided
remeshing approach has been available.

To remedy that situation, we developed an ef-
fective, efficient remeshing framework (see Fig-
ure 1). It generates quality meshes in three steps:
visual-feature extraction, resampling, and sample
optimization and meshing. All the algorithms in
our framework can be easily parallelized to run
on GPUs.

Good Remeshing
Depending on the target application, a remeshing
approach’s goal might vary. However, any remesh-
ing approach should have four properties.

First, it should be general. It shouldn’t place
strict requirements on the input models’ qual-
ity. You should be able to apply it to a variety of
models, such as orientable two-manifold piecewise
linear surfaces and polygon soups.

Second, it should be accurate. It should gener-
ate a mesh that’s as close as possible to the input
model. Also, the vertices’ distribution on the mesh
should lead to a good element shape (for example,
nearly regular triangles). To achieve high accuracy,
the vertices usually must be distributed adaptively
according to some density function.

Third, it should be efficient. It should be able
to process huge models with a massive number of
polygons in a reasonable amount of time.

Finally, it should be simple—that is, easy to
implement.

A proposed framework
extracts visual-perception
information in a polygonal
model’s image space and
maps it back to the Euclidean
space. On the basis of these
cues, the framework generates
a saliency field to resample
the input model. A projection
operator further optimizes
the distribution of resampled
points.

g1wan.indd 52 12/19/13 7:14 PM

 IEEE Computer Graphics and Applications 53

Extracting Perception Cues
A number of excellent approaches depict 3D
shapes in different styles according to visual re-
quirements. Advanced line-drawing techniques
can effectively depict 3D shapes and match the
effectiveness of artists’ drawings.3 It’s commonly
agreed that a good depiction of 3D shape should
include a wealth of visual cues beyond contours. In
this sense, a given model’s perception cues aren’t
limited by its silhouettes. Some approaches follow
this research thread.2 However, they don’t process
polygon soup models.

Here, we borrow tools from computer vision
to extract the perception cues in the image space
(that is, the different views of input models). We
map the results back to 3D models as 3D visual-
saliency points.

Visual-Saliency Extraction
We start remeshing by taking snapshots of an in-
put model. To obtain a mesh that produces good
visualization results, the snapshots capture six or-
thogonal views (see Figure 1). The images can be ef-
ficiently obtained through a hardware-accelerated
graphics pipeline (for example, OpenGL).

Preprocessing for problematic models. Our frame-
work processes models with holes and other
topological problems. If we didn’t process the
holes’ boundaries, the holes would be treated
simply as small features. To fill them, we ap-
ply a low-pass filter—specifically, a median filter
using a k × k aperture. We choose k accord-
ing to the input model’s noise level; for a highly
noisy model, we use a larger k. In our tests, k =
7 worked well. Figures 2a and 2b show this pre-
processing’s results. Before applying the median
filter, we must convert an RGB image into a gray-
scale image.

After preprocessing, we extract each snapshot’s
visual saliency, using an inner-feature filter and a
silhouette-feature filter.

The inner-feature filter. This filter spans a Gaussian
over the image. The grayscale value of each pixel
(u, v) is

�
P u v,() . The filter adopts an n × n 2D

Gaussian mask

G i j e
i

n
j

n

,() =
−

−





 + −

−







α

1
2

1
2

2

2 2

σσ()2
,

Image snapshots

Feature
extraction

Feature
mapping

1.0

0.0

Adaptive
sampling

Saliency �eld
generation

Sample
optimization

Mesh
generation

Figure 1. Our visual-perception-guided remeshing framework. First, we capture an input model’s image snapshots in six
orthogonal views. We then extract the perceptual features in the image space and map them back onto the input model as
saliency points (see the red ones on the model at the end of the bottom row). After that, we generate a saliency field and use
it to govern adaptive sampling. Finally, we use adaptive weighted locally optimal projection (AWLOP) operators to optimally
position the sample points, which we connect to create a two-manifold mesh surface.

g1wan.indd 53 12/19/13 7:14 PM

54 January/February 2014

Feature Article

where the bandwidth parameter σ = −()()−()+0 3 1 2 1 0 8. .n
σ = −()()−()+0 3 1 2 1 0 8. .n , a is a scale factor chosen so that

Si,j∈maskG(i, j) = 1, and e means exponent. Our tests
used n = 11 and a = 0.0242.

Using this mask, we obtain a weighted average
image, T(u, v):

T u v G i j P u i v j C
i j mask

, , ˆ ,
,

() = () + +()−
∈
∑ ,

where C is a threshold controlling how many fea-
ture edges can be extracted. We obtain the result-
ing binary image containing the candidate fea-
tures’ pixels:

F u v T u v P u v= () ()> (){ }, | , ˆ , .

If we use a smaller value for C, more pixels will
remain after filtering. Our implementation used

C = 3. We determine the final inner features by
excluding the silhouette pixels.

Figures 2c and 2d illustrate applying the inner-
feature filter to a horse model; Figures 2e through
2g compare the results for different values of C.

The silhouette-feature filter. The silhouette’s thin-
and-sharp features (for example, the horse model’s
ears and legs) are important for representing a 3D
model’s shape. Using the silhouette-feature filter,
we extract these pixels and add them to F . These
features are foreground pixels that

 ■ have background pixels in their 8-neighbors and
 ■ are a relatively short distance from the input
model’s skeleton.

So, to find these features, we extract the skeleton
of an input model in the image space and compute

(a) (b)

(c) (d)

(e) (f) (g)

Figure 2. Preprocessing and the inner-feature filter. During preprocessing, we (a) took a problematic horse
model and (b) applied a median filter to fill its holes. Applying the inner-feature filter to the grayscale image
in Figure 2b produced (c) a binary image containing (d) inner features. By applying different values for a
threshold C, we extracted different numbers of features: (e) C = 0, (f) C = 3, and (g) C = 6.

g1wan.indd 54 12/19/13 7:14 PM

 IEEE Computer Graphics and Applications 55

distances from the silhouette pixels to the skeleton.
These two tasks execute in parallel with the help of
a highly parallel distance transformation algorithm.

The distance transformation uses a small mask,
M, to propagate the distances over the image
iteratively. At the transformation’s beginning, we
assign zero to the distances D at the source pixels,
whereas we initialize the distances at the other
pixels as infinity. Then, the distance value at each
pixel (u, v) updates in parallel:

D u v D u i v j D i j
i j M

prev
M, min , ,

,
() = + +()+ (){ }

()∈
,

where Dprev is the distance at a pixel in the previous
iteration, and DM(i, j) is the local distance from
(i, j) to a mask’s center. If we use a z × z mask,

D i j i
z

j
z

M ,() = −
−






 + −

−











1
2

1
2

2 2








1 2/

.

The update runs in parallel on all pixels for a few
iterations until no distance value changes, which
we can easily check using scan primitives. Or, we
can conduct a fixed number, m, of iterations. We
set m as the input image’s diagonal length divided
by the size z of M. We could use a more accurate
parallel distance transformation algorithm. How-
ever, because accuracy isn’t a major concern in our
filter, we employ the previous algorithm, which is
easier to implement.

To extract the skeleton, we first compute a distance
map from every foreground pixel to the silhouette
pixels (by using the silhouette pixels as sources in the
distance transformation algorithm). We apply four
kernels (see Figures 3a through 3d) across the distance
map to extract the corresponding directional gradients.
If we find a significantly large gradient at a pixel, we
consider the pixel as belonging to the skeleton.

Specifically, if Ki(u, v) denotes the response of
kernel i for (u, v), we use the filter to extract the
skeleton pixels S :

–1 –1 –1 –1 –1

–1 –1 –1 –1 –1

0 0 0 0 0

0 0 0 0 0

2 2 2 2 2

–1 0 2 0 –1

–1 0 2 0 –1

–1 0 2 0 –1

–1 0 2 0 –1

–1 0 2 0 –1

0 –1 –1 0 2

2 0 –1 –1 0

–1 –1 0 2 0

0 2 0 –1 –1

–1 0 2 0 –1

2 0 –1 –1 0

0 –1 –1 0 2

0 2 0 –1 –1

–1 –1 0 2 0

–1 0 2 0 –1

(a)

(e) (f) (g)

(b) (c) (d)

(h) (i)

Figure 3. The silhouette-feature filter. To extract a skeleton on a silhouette distance map, we use (a) horizontal,
(b) vertical, (c) 45-degree, and (d) 135-degree edge extraction kernels. For (e) an input model in the image
space, we use (f) the distance map of its silhouette to extract (g) its skeleton. From the skeleton, we obtain
(h) a distance map with which we detect (i) the model’s thin-and-sharp features on the silhouette.

g1wan.indd 55 12/19/13 7:14 PM

56 January/February 2014

Feature Article

S u v K u v
i

i= { } >{ }
∀

(,)|max (,) l ,

with l = 8 being the threshold for selecting the
significantly large gradient. Using a larger l gener-
ates sparse points for the skeleton; a smaller l gives
a dense skeleton with many unwanted branches.
Figures 3e through 3g illustrate applying this
skeleton-extraction filter.

We generate another distance map by using the
skeleton pixels as sources, the value of which pre-
sents the feature size. With this information, we
can detect the silhouette pixels with a small fea-
ture size (fewer than 20 in our tests on 512 × 512
images). We add these pixels to the set of feature
points. Figures 3g through 3i show the result of
extracting such thin-and-sharp features on the
horse model.

A highly parallel implementation on a GPU. Imple-
menting these image-processing operators is easy.
Before applying them, we evaluate them indepen-
dently on the basis of the neighboring pixels’ in-
formation. So, they’re realized as kernels running
on the GPU with the help of the CUDA (Compute
Unified Device Architecture) software develop-
ment kit (SDK) library.

Image Space to Euclidean Space Mapping
After extracting the visual saliency, we map the
set of feature pixels back to the Euclidean space
to guide sampling. To obtain efficient mapping,
we employ a hardware-accelerated graphics pipe-
line (OpenGL in our implementation). When tak-
ing the snapshots, we record every pixel’s z-buffer
value. These values help to unproject every pixel

in the set of feature points back to 3 to serve as
saliency points.

Visual-Perception-Guided Sampling
After generating the saliency points, we build a
scalar saliency field over the entire surface domain
to govern resampling.

Saliency Field Generation
We aim to distribute a user-specified number of
samples over the mesh surface such that more
points will be on the visually salient regions. Spe-
cifically, vertices near the saliency points should
have higher visual importance. A value of 1.0 rep-
resents the highest visual importance. We assign
values within [0, 1) to all vertices.

To generate the visual-saliency field, we use an
advancing-front method. This method progressively
moves a front L from the saliency points to their
nearest-neighbor vertices on the surface and then to
farther vertices until it has travelled all the vertices.
Before the propagation, we insert the input model’s
saliency points and vertices into a k-d tree to con-
duct the approximate nearest-neighbor search.

To govern the propagation, we construct the
neighborhood table and copy it to the GPU side.
During the advancing, we update the depth dvi of
every vertex vi, which indicates the shortest dis-
tance to that vertex’s nearest saliency point. We
initialize the vertices’ depths as +∞ and set the
saliency points’ depths to zero. Figure 4 shows the
pseudocode for parallel propagation.

Then, we set the visual importance of every ver-
tex vi as

Iv d
i

vi= b ,

 1 Input: the set of saliency points
�
F and a model M

 Output: the propagated depths on vertices of M
 2 Set the depth values of all points in

�
F as zero;

 3 Set the depth values of all vertices on M as ∞;
 4 Insert all the points of

�
F into the front L;

 5 while L ≠ Ø do
 6 foreach vi ∈ M in parallel do
 7 if (vi is untraveled) AND (vi is the neighbor of a traveled point) then
 8 Set vi as a candidate vertex of ‘next-front’;
 9 end
10 end
11 Compact all ‘next-front’ vertices on M into a new set L′;
12 foreach vk ∈ L′ in parallel do
13 d dv j vk j⇐ +min { 1} for all neighbors vj of vk;
14 Set vk as travelled;
15 end
16 Update the front as L ⇐ L ′;
17 end
18 return;

Figure 4. The algorithm for parallel propagation of saliency fields. The depth dvi of every vertex vi indicates
the shortest distance to that vertex’s nearest saliency point.

g1wan.indd 56 12/19/13 7:14 PM

 IEEE Computer Graphics and Applications 57

where b ∈ [0,1]. The larger b is, the smoother the
field is. For the models in this article, we used b =
0.7 and set the number of neighbors as k = 10 to
balance speed and accuracy.

Adaptive Sampling
We integrate the saliency field over the surface and
obtain a visual quantity Vs:

V Vs i

i

n

=
=
∑

1

,

where n is the number of triangles. Vi is the visual
quantity of the ith triangle:

V A Ii i v

j
j=

=
∑1

3 1

3

,

where Ai is the triangle area and Ivj is the vertices’
visual importance.

Suppose we plan to generate ns sample
points on the input model. We calculate the
number of samples, ni, in the ith triangle as
n V V ni i s s= () +



0 5. . We round ni to an integer,

which introduces a signed quantization error Er.
As the sampling proceeds triangle by triangle, this
error accumulates and can’t be neglected. So, we
correct the number of samples in the ith triangle to

n
V
V

n Ei
i

s
s r

r

i

= + +












=

−

∑ 0 5
1

1

. (1)

by considering the quantization error

E
V
V

n nr
r

s
s r= −

on all previously sampled triangles.

Uniform triangle sampling. We generate the samples
in a triangle T with vertices vi, vj, and vk with the
help of barycentric coordinate b = (bi, bj, bk), with
bi, bj, bk ∈ [0, 1] and bi + bj + bk ≡ 1.

First, we generate two random numbers: r1 ∈
[0, 1] and r2 ∈ [0, 1]. We use them to form the
barycentric coordinate:

b = { } { } − { } − { }min , ,max , min , , max ,r r r r r r r r1 2 1 2 1 2 1 21(()

b = { } { } − { } − { }min , ,max , min , , max ,r r r r r r r r1 2 1 2 1 2 1 21((),

so that b represents a new sample point’s position
in the triangle. When the number of expected
samples in a triangle is small (for example, ni < 5),
we employ this simple uniform triangle sampling
because the distribution of samples according to
the visual importance is contributed mainly by
Equation 1.

However, when ni becomes big, the distribution
should follow the visual importance evaluated on
the vertices. Then, we employ adaptive triangle
sampling.

Adaptive triangle sampling. Because we know the
visual-importance values Ivi , Ivj , and Ivk on vi, vj,
and vk, we formulate the expected distribution of
samples as a normalized function J(b), using b =
(bi, bj, bk) and I b I b I b Ii v j v k vi j kb() = + + :

J
I d

Ib
b T

b

T

() =
()

()
∫

1
,

where I d A I I Iv v vi j kb T
T

() = () + +()∫ 3 , and d means
derivative. For a sample point following J(b), we

obtain bi and bj one by one. We later determine
bk = 1 – bi – bj.

By introducing a marginal density of bi,

J b J b b b b dbM i i j i j j() = − −()∫ , ,1
T

,

we formulate the cumulative density function
(CDF) of bi as

F x J b dbM i i

x

1
0

() = ()∫ .

According to Wolfgang Hörmann and his
colleagues’ analysis, for a CDF F(…) of a random
variable x, if another random variable r comes
from a uniform distribution in [0, 1], the random
variable z = F–1(r) comes from the same distribution
of x.4 Specifically, for a random draw r1 ∈ [0, 1],
x follows the expected distribution of bi when
F1(x) = r1 is enforced. That is, we determine bi =
x by solving

� � �ax bx cx I I I rv v vi j k
3 2

1+ + = + +() ,

with �a I I Iv v vj k i= + − 2 ,
�
b I I Iv v vi j k= − −()3 , and

�c I Iv vj k= +()3 . Given the value of bi, the
conditional distribution of bj is

JC(bj) = J(bi, bj, 1 – bi – bj)/JM(bi).

After generating the saliency points, we
build a scalar saliency field over the entire
surface domain to govern resampling.

g1wan.indd 57 12/19/13 7:14 PM

58 January/February 2014

Feature Article

Then, we formulate the CDF of bj:

F y J b dbC j j

y

2
0

() ()= ∫ .

Similarly, for a random draw r2 ∈ [0, 1], y follows
the expected distribution of bj when F2(y) = r2 is
enforced—that is, the solution of

λ γx x f2 + =
�

,

with l = () −()1 2 I Iv vj k , γ = − +I b I b Iv i v i vi k k , and

�
f I I I b I I I b I Iv v v i v v v i v vj k i i j k j k= + −() + − −() + +

1
2

2 22(()r2

�
f I I I b I I I b I Iv v v i v v v i v vj k i i j k j k= + −() + − −() + +

1
2

2 22(()r2 .

The sampling we described before efficiently gen-
erates samples such that the region with high visual
importance has more points, which follows the ex-
tracted perception cues. As Figure 5 shows, we can
generate an adaptive distribution of samples by fol-
lowing the visual importance assigned at vertices.

A hybrid CPU/GPU implementation. To implement the
sampling in a hybrid CPU/GPU manner, we first
evaluate how many points to sample on each tri-

angle on the CPU. Then, we classify the triangles
into those to sample uniformly and those to sam-
ple adaptively. Finally, we generate the samples for
each group in parallel on the GPU and insert them
in a 1D array with the help of the GPU’s atomic
operator.

A Sample Distribution Optimization
The generated samples follow the indication
presented by the saliency field. However, the
samples aren’t distributed regularly enough to
be linked to form well-shaped triangles (with
nearly equal angles on vertices). To improve the
distribution’s regularity, we employ an iterative
method. After repositioning the sample points,
we use the Tight Co-Cone algorithm (avail-
able at www.cse.ohio-state.edu/%7Etamaldey/
cocone.html) to connect them to form a two-
manifold triangular mesh.

AWLOP
Our algorithm to reposition sample points is akin
to the projection operators used in point-sample
surfaces—specifically, the locally optimal projec-
tion (LOP) operator. Given a data point set P =
{pj} ⊂ 3, LOP projects a set of particles X = {xi} ⊂
3 onto the surface formed by P by approximating
their L1 medians.

To improve the projected particles’ regular-
ity, Hui Huang and her colleagues presented a
weighted locally optimal projection (WLOP) oper-
ator, which introduces a repulsion term to control
the particle distribution.5 This pushes the particles
so that their distances from their neighbors are
nearly equal. In other words, this obtains a uni-
form distribution.

However, WLOP doesn’t consider the saliency
field. So, we extended it to an adaptive version—
AWLOP—that incorporates the projected points’
visual-saliency values. Specifically, we obtain P
from M by

 ■ uniformly sampling M if its number of vertices
is small or

 ■ directly using the vertices of M if their number
is large.

The particles in X are the sample points we ob-
tained earlier. We move every particle xi to a new
position. Similarly to WLOP, the position update
consists of two terms. The first attracts the particle
to the given point set by the weighted local density,

oj j l
Pl j

= + −()
∈()∑1 q p p

p p\{ }
.

0.0

0.0 0.0

0.0

0.0 1.0

0.5

0.0 1.0

(a)

(b)

(c)

Figure 5. Generating adaptive samples. (a) We employ an inversion
method3 according to the visual importance assigned to a triangle’s
vertices. (b) 100 samples are generated on triangles. (c) 500 samples are
generated.

g1wan.indd 58 12/19/13 7:14 PM

 IEEE Computer Graphics and Applications 59

The second term repulses the particles away from
other particles by a particle distribution density,
wq. The updated position of xi is

x p
x p x p

x p x p
p

p
i j

i j j i j

i j j i j
P

P

o

o
j

j
=

−() −

−() −

+

∈
∈ ∑∑

θ

θ

µ xx x
x x x x

x x
i q

q i q i q

X

w

Wq i
−()

−() −
∈()∑

θ
\{ }

,

where

W wq i q i q
Xq i

= −() −
∈()∑ q x x x x

x x
, ...

\{ }

is the L2 norm, and q() /r e r h= −16 2 2
.5 q(r) is a rapidly

decreasing smooth weight function, with the support
radius h defining the influenced neighborhood’s size.
m ∈ [0, 0.5) and h are two user-selected parameters
for tuning the operator’s performance.

Unlike WLOP, AWLOP defines wq at x as a
function of the visual importance I(cq) at the
closest vertex of xq, where cq ∈ M. To allow visual-
saliency-guided particle distribution, the regions
with high visual importance should have weaker
repulsion forces. So, we make wq inversely propor-
tional to I(xq):

wq = 1/I(cq).

In our tests, we set m = 0.45 and h = 2Lavg, with
Lavg being the data points’ average distance to their
k-nearest neighbors. We chose k = 20 to balance
speed and robustness.

Implementation Details and Comparisons
We implemented AWLOP in a hybrid CPU/GPU
program. We constructed and updated the neigh-
borhood table of points in P and X on the CPU,
using the ANN (Approximate Nearest Neighbor)
library (available at www.cs.umd.edu/~mount/
ANN). The iterative updating of the particles’
positions executed on the GPU. This let us ef-
ficiently optimize the samples to a regular distri-
bution that could adapt according to the visual-
saliency field.

Figure 6 compares results for LOP, WLOP, and
AWLOP. For the input hand model (see Figure
6a) and its saliency field (see Figure 6b), we gen-
erated 10k points with an irregular distribution
(see Figure 6c). The LOP and WLOP distributions
(see Figures 6d and 6e) tended to be uniform no
matter what the initial set was. AWLOP generated
particles that adapted to the visual saliency (see
Figures 6f and 6g).

We set wq as 1/I(cq) for Figure 6f and 1/I2(cq)
for Figure 6g. The distribution in Figure 6g was
more adaptive than the one in Figure 6f. However,
it could have led to too sparse regions when the
number of particles was very small. So, our all
later tests used 1/I(cq).

Results and Discussion
We implemented our framework using C++ and
the CUDA SDK library (you can access the imple-
mentation at www2.mae.cuhk.edu.hk/%7Ecwang/
GPURemeshByVisualCues.html). We ran it on a
PC with an Intel Core i7 3.4-GHz CPU, 8 Gbytes
of RAM, and a GeForce GTX 660 Ti GPU. All the
tasks ran in parallel. Because our algorithms are
highly parallel, the remeshing of all the examples
took less than 10 seconds.

(a)

(d) (e)

(f) (g)

(b) (c)

Figure 6. Comparing locally optimal projection (LOP), weighted LOP
(WLOP), and adaptive WLOP (AWLOP). For (a) a hand model and (b) its
visual-saliency field, our sampling method generated (c) 10k points with
an irregular distribution. The results for (d) LOP and (e) WLOP exhibited
uniformly distributed particles. With AWLOP, we obtained a regular and
adaptive distribution with (f) wq= 1/I(cq) and (g) wq = 1/I2(cq), where wq
is the particle distribution density and I(cq) is the visual importance at
the closest vertex of particle xq.

g1wan.indd 59 12/19/13 7:14 PM

60 January/February 2014

Feature Article

Figure 7 shows the results for remeshing a kitten
model (137k vertices) and a Max Planck bust model
(199k vertices). We downsampled the original
models to 5k vertices (kitten) and 10k vertices

(Max Planck bust) according to the visual-saliency
field. Finally, we optimized and meshed the sample
points. Even after we downsampled the models
to less than 4 percent of their original complex-

(a) (b) (c) (d) (e)

Figure 7. Comparing four remeshing approaches. We started with (a) a kitten model (approximately 137k vertices) and a
Max Planck bust model (199k vertices). We remeshed them to 5k and 10k vertices, respectively, using (b) our approach, (c) a
saliency-based approach,6 (d) an approach based on quadric error metrics (QEM),7 and (e) Simon Fuhrmann and his colleagues’
approach.8 The top row shows the shading models, the middle row shows the mesh models, and the bottom row shows line
drawings generated by Doug DeCarlo and his colleagues’ method.2

Remeshing improves mesh quality in many computer
graphics applications—for example, shape editing, ani-

mation, and numerical simulation. Recently, it has received
considerable attention, and researchers have developed
a variety of remeshing algorithms. Current approaches
either compute the remeshing in parametric domains or
directly generate it on 3D surfaces.

Parameterization-based approaches partition a pa-
rameter domain into sets of adjacent elements with the
same specific properties. Xianfeng Gu and his colleagues’
approach cuts the surface into patches, parameterizes
it using a signal-adapted technique, and represents
the surface as a set of images that store the geometry
and other attributes used for visualization.1 Vitaly
Surazhsky and his colleagues’ remeshing algorithm is
based on local parameterization.2 However, parameter-
izing free-form models is challenging and introduces
severe distortions.

To alleviate these problems, researchers have proposed
remeshing that directly samples 3D meshes. Greg Turk
presented retiling that applies attraction-repulsion parti-
cle relaxation to resample an input mesh.3 Yongwei Miao
and his colleagues introduced curvature-aware adaptive

sampling,4 which can help produce high-quality meshes.
Simon Fuhrmann and his colleagues devised curvature-
adaptive remeshing based on weighted centroidal
Voronoi tessellation.5 However, none of these approaches
takes visual perception into consideration. In addition,
they are highly time-consuming and can’t be sped up by
GPU-based computing.

References
 1. X. Gu, S.J. Gortler, and H. Hoppe, “Geometry Images,” ACM

Trans. Graphics, vol. 21, no. 3, 2002, pp. 355–361.

 2. V. Surazhsky, P. Alliez, and C. Gotsman, “Isotropic Remeshing

of Surfaces: A Local Parameterization Approach,” Proc. 12th

Int’l Meshing Roundtable, 2003, pp. 215–224.

 3. G. Turk, “Re-tiling Polygonal Surfaces,” Proc. Siggraph, 1992,

pp. 55–64.

 4. Y. Miao, R. Pajarola, and J. Feng, “Curvature-Aware Adaptive

Re-sampling for Point-Sampled Geometry,” Computer-Aided

Design, vol. 41, no. 6, 2009, pp. 395–403.

 5. S. Fuhrmann et al., “Direct Resampling for Isotropic Surface

Remeshing,” Proc. 2010 Vision, Modeling, and Visualization

Workshop, Eurographics Assoc., 2010, pp. 9–16.

Related Work in Remeshing

g1wan.indd 60 12/19/13 7:14 PM

 IEEE Computer Graphics and Applications 61

ity, the resulting shapes looked similar, and the
vertex distribution adapted strictly to the visual-
saliency field.

We compared our approach with a saliency-
based approach,6 an approach based on quadric
error metrics (QEM),7 and Simon Fuhrmann and
his colleagues’ approach8 (with a contrast factor of
1.5), using the implementation we mentioned ear-
lier. (For more on other remeshing approaches, see
the sidebar.) To compare how these approaches pre-
serve the visual perception, we rendered the origi-

nal model and remeshed models into line drawings,
using a state-of-the-art method2 in which the non-
photorealistic rendering relies on visual perception.
The results in Figures 8 and 9 show that our ap-
proach best preserved visual saliency.

Using the input models’ nonphotorealistic ren-
derings as a reference, we compared the rendering
results for the four approaches. We measured the
quantitative similarity between the images using
an image quality comparison metric simulating a
human vision system.9 Table 1 shows the results

(a)

(b)

(c)

(d)

(e)

Figure 8. Remeshing a rocker arm model. We remeshed (a) the original model from 121k to 10k vertices
using (b) our approach, (c) mesh saliency, (d) QEM, and (e) Fuhrmann and his colleagues’ approach. The left
column shows the shading models, the middle column shows the visual saliency extracted by DeCarlo and
his colleagues’ method, and the right column shows the mesh models. Our approach best preserved visual
saliency.

g1wan.indd 61 12/19/13 7:14 PM

62 January/February 2014

Feature Article

in the “visual error” column. A higher number
indicates a model with more visual-perception
features remaining. The results indicate that our
approach produced the best remeshing, regarding
visual saliency.

Regarding the computation times listed in Table
1, our approach was the fastest by far for input
models with many vertices. This was because
many steps of our remeshing pipeline are highly
parallelized and run on a GPU.

We obtained the geometric error listed in Table 1
with the publicly available Metro tool (http://vcg
.isti.cnr.it/activities/surfacegrevis/simplification/
metro.html). The results weren’t consistent with
those for the visual error. Our approach’s mean
and maximum errors were similar but were greater
than those for mesh saliency and QEM. This sug-
gests that for applications focusing on rendering
quality, existing geometric-error metrics might
not fully represent visual cues.

As we mentioned before, our approach works
with meshes with topology problems; see the
zoomed-in views of the two polygon soup models
in Figure 10. This is because our algorithms don’t
rely strongly on the input models’ local connectiv-
ity. Figure 10 also shows the remeshing results for
the two models.

Because our approach extracts the visual-
saliency measurement in the 2D image space,

the selection of snapshots will influence the mea-
surement. As we mentioned before, we use six or-
thogonal views to generate the snapshots. So, this
process might miss important features that aren’t
visible in those views. In the current implementa-
tion, users select the model’s orientation in the
front view, then our approach automatically gen-
erates the other five views. We plan to automate
orientation selection by using visual cues. We’ll
also explore techniques for adaptive viewpoint se-
lection to further improve the remeshed models’
fidelity.

Finally, our framework isn’t limited by the par-
ticular type of perception cue. So, any other ex-
traction algorithms based on visual-perception
cues can be easily plugged into it.

Acknowledgments
Hong Kong Special Administrative Region Research
Grants Council / General Research Fund grant
CUHK/417109 and Chinese University of Hong
Kong Direct Research grants CUHK/2050518
and CUHK/2050492 supported this research. The

(a)

(b)

(c)

(d)

(e)

Figure 9. Remeshing a bulldog model. We remeshed (a) the original
model from almost 1M triangles to 20k vertices using (b) our approach,
(c) mesh saliency, (d) QEM, and (e) Fuhrmann and his colleagues’
approach. The left column shows the shading models, the middle
column shows the extracted line drawings, and the right column shows
the mesh models. Our approach best preserved the visual saliency (see
the model’s eyes, nose, tongue and toe, indicated by the red boxes in
Figure 9b). Moreover, our approach took only about 8 seconds with the
help of the GPU’s highly parallel computational power.

g1wan.indd 62 12/19/13 7:14 PM

 IEEE Computer Graphics and Applications 63

horse polygon soup model is courtesy of Tao Ju. We
downloaded the kitten, rocker arm, Max Planck,
and bulldog models from the AIM@SHAPE shape
repository.

References
 1. J.T. Todd, “The Visual Perception of 3D Shape,”

Trends in Cognitive Sciences, vol. 8, no. 3, 2004, pp.
115–121.

 2. D. DeCarlo et al., “Suggestive Contours for
Conveying Shape,” ACM Trans. Graphics, vol. 22, no.
3, 2003, pp. 848–855.

 3. F. Cole et al., “How Well Do Line Drawings Depict
Shape?,” ACM Trans. Graphics, vol. 28, no. 3, 2009,
article 28.

 4. W. Hörmann, J. Leydold, and G. Derflinger,
Automatic Nonuniform Random Variate Generation,
Springer, 2004.

 5. H. Huang et al., “Consolidation of Unorganized
Point Clouds for Surface Reconstruction,” ACM
Trans. Graphics, vol. 28, no. 5, 2009, article 176.

 6. C.H. Lee, A. Varshney, and D.W. Jacobs, “Mesh
Saliency,” ACM Trans. Graphics, vol. 24, no. 3, 2005,
pp. 659–666.

 7. M. Garland and P.S. Heckbert, “Surface Simplification
Using Quadric Error Metrics,” Proc. Siggraph, 1997,
pp. 209–216.

 8. S. Fuhrmann et al., “Direct Resampling for Isotropic
Surface Remeshing,” Proc. 2010 Vision, Modeling,
and Visualization Workshop, 2010, pp. 9–16.

 9. Y.-J. Liu et al., “Image Retargeting Quality Assessment,”
Computer Graphics Forum, vol. 30, no. 2, 2011, pp.
583–592.

Lianping Xing is a PhD candidate in the Chinese Univer-
sity of Hong Kong’s Department of Mechanical and Auto-
mation Engineering. Her research interests include computer
graphics, CAD, and geometric processing. Xing received an
MS in computer science from Tianjin University. Contact
her at lpxing@mae.cuhk.edu.hk.

Xiaoting Zhang is a PhD student in the Chinese University
of Hong Kong’s Department of Mechanical and Automation
Engineering. Her research interests include geometric model-
ing, image processing, and computer vision. Zhang received
an MPhil in mechanical engineering and automation from
the Harbin Institute of Technology. Contact her at xtzhang@
mae.cuhk.edu.hk.

Charlie C.L. Wang is an associate professor in the Chinese
University of Hong Kong’s Department of Mechanical and
Automation Engineering. His research interests are geomet-
ric modeling, design and manufacturing, and computational
physics. Wang received a PhD in mechanical engineering
from the Hong Kong University of Science and Technology.

Table 1. Results for four remeshing approaches.

Model

No. of vertices

Approach Time (sec.)*
Visual-

similarity error9

Geometric error†

Input Result Max. Mean

Kitten
(Fig. 7)

137k 5k Ours 3.635 0.9247 0.834 3.56 × 10–2

Mesh saliency6 3,882 (×1,068) 0.9110 0.178 1.78 × 10–2

Quadric error metrics (QEM)7 9.752 (×2.7) 0.8984 0.189 1.44 × 10–2

Fuhrmann and colleagues8 126.800 (×35) 0.9048 3.140 2.640

Max Planck
bust
(Fig. 7)

199k 10k Ours 5.384 0.9272 1.250 0.158

Mesh saliency 11,740 (×2,180) 0.9070 0.338 3.13 × 10–2

QEM 112 (×21) 0.8936 0.640 2.77 × 10–2

Fuhrmann and colleagues 7,403 (×1,375) 0.9021 1.750 1.360

Rocker
arm
(Fig. 8)

120k 10k Ours 4.148 0.9536 2.80 × 10–3 1.66 × 10–4

Mesh saliency 4,539 (×1,094) 0.9401 9.05 × 10–4 7.80 × 10–5

QEM 9.361 (×2.3) 0.9399 9.19 × 10–4 6.10 × 10–5

Fuhrmann and colleagues 26.210 (×6.3) 0.9367 3.75 × 10–3 2.77 × 10–4

Bulldog
(Fig. 9)

493k 20k Ours 8.578 0.9655 1.370 0.143

Mesh saliency 104,781 (×12,215) 0.9535 0.602 4.03 × 10–2

QEM 301 (×35) 0.9573 0.878 3.79 × 10–2

Fuhrmann and colleagues 654 (×76) 0.9334 11.500 6.940

Horse
(Fig. 10)

203k 10k Ours 4.526 — 2.58 × 10–3 9.10 × 10–5

Igea
(Fig. 10)

806k 6k Ours 5.755 — 9.33 × 10–4 3.90 × 10–5

* The numbers in parentheses show our approach’s speedup compared to mesh saliency, QEM, and Simon Fuhrmann and his colleagues’ approach.
† To measure the geometric error, we used the publicly available Metro tool.

g1wan.indd 63 12/19/13 7:14 PM

64 January/February 2014

Feature Article

He’s a fellow of ASME. He serves on the editorial boards of
Computer-Aided Design, the ASME Journal of Computing
and Information Science in Engineering, and the Interna-
tional Journal of Precision Engineering and Manufactur-
ing. Contact him at cwang@mae.cuhk.edu.hk.

Kin-Chuen Hui is a professor in the Chinese University of
Hong Kong’s Department of Mechanical and Automation
Engineering and directs the Computer-Aided Design Labora-
tory. His research interests are computer graphics, geomet-
ric and solid modeling, VR, and the application of VR to
environmental protection. Hui received a PhD in mechani-
cal engineering from the University of Hong Kong. He’s an
editorial board member of the Journal of Computer-Aided
Design. He’s a member of the Institution of Mechanical
Engineers, British Computer Society, and Hong Kong Com-
puter Society and a fellow of the Hong Kong Institution of
Engineers. Contact him at kchui@mae.cuhk.edu.hk.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

(a)

(b)

Figure 10. Remeshing two polygon soup models with topology problems (see the zoomed-in views). (a) We remeshed a horse
model with 204k vertices into a two-manifold triangular mesh with 10k vertices. (b) We remeshed an Igea model with 806k
vertices into a mesh with 10k vertices. In both cases, we preserved the visual saliency.

On Computing
 podcast

www.computer.org/oncomputing

g1wan.indd 64 12/19/13 7:14 PM

