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Computer graphics applications often em-
ploy polygon meshes to represent 3D geo-
metric shapes. Methods to create meshes 

include using modeling software and 3D range 
scans. However, owing to these methods’ limi-
tations, the resulting meshes’ quality might be 

unsatisfactory, even if they cap-
ture 3D shapes accurately. Some 
meshes might even contain de-
fects such as gaps, holes, and 
self-intersecting triangles.

Remeshing is usually employed 
to improve the geometry’s qual-
ity and the mesh’s connectivity. 
Researchers have devised many 
remeshing approaches that gen-
erate a point distribution cap-
turing the underlying model’s 
characteristics. These approaches 
produce different patterns (for 
example, through uniform sam-
pling, curvature-adapted sam-

pling, and Poisson disk sampling). However, most 
of them use sequential algorithms and take tre-
mendous time to compute. They also have difficulty 
exploiting GPUs’ computational power.

To improve remeshing, we propose exploiting hu-
man visual-perception cues. Research has shown 
that you can greatly enhance complex 3D models’ 
comprehensibility by guiding users’ attention to vi-
sually salient regions.1 Owing to visual-perception 
techniques’ efficient visual persuasion in traditional 
art and technical illustration, they’ve been widely 

used in many computer graphics applications, in-
cluding feature extraction and shape matching.2 
However, until now, no visual-perception-guided 
remeshing approach has been available.

To remedy that situation, we developed an ef-
fective, efficient remeshing framework (see Fig-
ure 1). It generates quality meshes in three steps: 
visual-feature extraction, resampling, and sample 
optimization and meshing. All the algorithms in 
our framework can be easily parallelized to run 
on GPUs.

Good Remeshing
Depending on the target application, a remeshing 
approach’s goal might vary. However, any remesh-
ing approach should have four properties.

First, it should be general. It shouldn’t place 
strict requirements on the input models’ qual-
ity. You should be able to apply it to a variety of 
models, such as orientable two-manifold piecewise 
linear surfaces and polygon soups.

Second, it should be accurate. It should gener-
ate a mesh that’s as close as possible to the input 
model. Also, the vertices’ distribution on the mesh 
should lead to a good element shape (for example, 
nearly regular triangles). To achieve high accuracy, 
the vertices usually must be distributed adaptively 
according to some density function.

Third, it should be efficient. It should be able 
to process huge models with a massive number of 
polygons in a reasonable amount of time.

Finally, it should be simple—that is, easy to 
implement.

A proposed framework 
extracts visual-perception 
information in a polygonal 
model’s image space and 
maps it back to the Euclidean 
space. On the basis of these 
cues, the framework generates 
a saliency field to resample 
the input model. A projection 
operator further optimizes 
the distribution of resampled 
points.
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Extracting Perception Cues
A number of excellent approaches depict 3D 
shapes in different styles according to visual re-
quirements. Advanced line-drawing techniques 
can effectively depict 3D shapes and match the 
effectiveness of artists’ drawings.3 It’s commonly 
agreed that a good depiction of 3D shape should 
include a wealth of visual cues beyond contours. In 
this sense, a given model’s perception cues aren’t 
limited by its silhouettes. Some approaches follow 
this research thread.2 However, they don’t process 
polygon soup models.

Here, we borrow tools from computer vision 
to extract the perception cues in the image space 
(that is, the different views of input models). We 
map the results back to 3D models as 3D visual-
saliency points.

Visual-Saliency Extraction
We start remeshing by taking snapshots of an in-
put model. To obtain a mesh that produces good 
visualization results, the snapshots capture six or-
thogonal views (see Figure 1). The images can be ef-
ficiently obtained through a hardware-accelerated 
graphics pipeline (for example, OpenGL).

Preprocessing for problematic models. Our frame-
work processes models with holes and other 
topological problems. If we didn’t process the 
holes’ boundaries, the holes would be treated 
simply as small features. To fill them, we ap-
ply a low-pass filter—specifically, a median filter 
using a k × k aperture. We choose k accord-
ing to the input model’s noise level; for a highly 
noisy model, we use a larger k. In our tests, k = 
7 worked well. Figures 2a and 2b show this pre-
processing’s results. Before applying the median 
filter, we must convert an RGB image into a gray-
scale image.

After preprocessing, we extract each snapshot’s 
visual saliency, using an inner-feature filter and a 
silhouette-feature filter.

The inner-feature filter. This filter spans a Gaussian 
over the image. The grayscale value of each pixel 
(u, v) is 
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Figure 1. Our visual-perception-guided remeshing framework. First, we capture an input model’s image snapshots in six 
orthogonal views. We then extract the perceptual features in the image space and map them back onto the input model as 
saliency points (see the red ones on the model at the end of the bottom row). After that, we generate a saliency field and use 
it to govern adaptive sampling. Finally, we use adaptive weighted locally optimal projection (AWLOP) operators to optimally 
position the sample points, which we connect to create a two-manifold mesh surface.
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where the bandwidth parameter σ = −( )( )−( )+0 3 1 2 1 0 8. .n
σ = −( )( )−( )+0 3 1 2 1 0 8. .n , a is a scale factor chosen so that 

Si,j∈maskG(i, j) = 1, and e means exponent. Our tests 
used n = 11 and a = 0.0242.

Using this mask, we obtain a weighted average 
image, T(u, v):

T u v G i j P u i v j C
i j mask

, , ˆ ,
,

( ) = ( ) + +( )−
∈
∑ ,

where C is a threshold controlling how many fea-
ture edges can be extracted. We obtain the result-
ing binary image containing the candidate fea-
tures’ pixels:

F u v T u v P u v= ( ) ( )> ( ){ }, | , ˆ , .

If we use a smaller value for C, more pixels will 
remain after filtering. Our implementation used 

C = 3. We determine the final inner features by 
excluding the silhouette pixels.

Figures 2c and 2d illustrate applying the inner-
feature filter to a horse model; Figures 2e through 
2g compare the results for different values of C.

The silhouette-feature filter. The silhouette’s thin-
and-sharp features (for example, the horse model’s 
ears and legs) are important for representing a 3D 
model’s shape. Using the silhouette-feature filter, 
we extract these pixels and add them to F . These 
features are foreground pixels that

 ■ have background pixels in their 8-neighbors and
 ■ are a relatively short distance from the input 
model’s skeleton.

So, to find these features, we extract the skeleton 
of an input model in the image space and compute 

(a) (b)

(c) (d)

(e) (f) (g)

Figure 2. Preprocessing and the inner-feature filter. During preprocessing, we (a) took a problematic horse 
model and (b) applied a median filter to fill its holes. Applying the inner-feature filter to the grayscale image 
in Figure 2b produced (c) a binary image containing (d) inner features. By applying different values for a 
threshold C, we extracted different numbers of features: (e) C = 0, (f) C = 3, and (g) C = 6.
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distances from the silhouette pixels to the skeleton. 
These two tasks execute in parallel with the help of 
a highly parallel distance transformation algorithm.

The distance transformation uses a small mask, 
M, to propagate the distances over the image 
iteratively. At the transformation’s beginning, we 
assign zero to the distances D at the source pixels, 
whereas we initialize the distances at the other 
pixels as infinity. Then, the distance value at each 
pixel (u, v) updates in parallel:

D u v D u i v j D i j
i j M

prev
M, min , ,

,
( ) = + +( )+ ( ){ }

( )∈
,

where Dprev is the distance at a pixel in the previous 
iteration, and DM(i, j) is the local distance from 
(i, j) to a mask’s center. If we use a z × z mask,
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The update runs in parallel on all pixels for a few 
iterations until no distance value changes, which 
we can easily check using scan primitives. Or, we 
can conduct a fixed number, m, of iterations. We 
set m as the input image’s diagonal length divided 
by the size z of M. We could use a more accurate 
parallel distance transformation algorithm. How-
ever, because accuracy isn’t a major concern in our 
filter, we employ the previous algorithm, which is 
easier to implement.

To extract the skeleton, we first compute a distance 
map from every foreground pixel to the silhouette 
pixels (by using the silhouette pixels as sources in the 
distance transformation algorithm). We apply four 
kernels (see Figures 3a through 3d) across the distance 
map to extract the corresponding directional gradients. 
If we find a significantly large gradient at a pixel, we 
consider the pixel as belonging to the skeleton.

Specifically, if Ki(u, v) denotes the response of 
kernel i for (u, v), we use the filter to extract the 
skeleton pixels S :
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Figure 3. The silhouette-feature filter. To extract a skeleton on a silhouette distance map, we use (a) horizontal, 
(b) vertical, (c) 45-degree, and (d) 135-degree edge extraction kernels. For (e) an input model in the image 
space, we use (f) the distance map of its silhouette to extract (g) its skeleton. From the skeleton, we obtain  
(h) a distance map with which we detect (i) the model’s thin-and-sharp features on the silhouette.
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with l = 8 being the threshold for selecting the 
significantly large gradient. Using a larger l gener-
ates sparse points for the skeleton; a smaller l gives 
a dense skeleton with many unwanted branches. 
Figures 3e through 3g illustrate applying this 
skeleton-extraction filter.

We generate another distance map by using the 
skeleton pixels as sources, the value of which pre-
sents the feature size. With this information, we 
can detect the silhouette pixels with a small fea-
ture size (fewer than 20 in our tests on 512 × 512 
images). We add these pixels to the set of feature 
points. Figures 3g through 3i show the result of 
extracting such thin-and-sharp features on the 
horse model.

A highly parallel implementation on a GPU. Imple-
menting these image-processing operators is easy. 
Before applying them, we evaluate them indepen-
dently on the basis of the neighboring pixels’ in-
formation. So, they’re realized as kernels running 
on the GPU with the help of the CUDA (Compute 
Unified Device Architecture) software develop-
ment kit (SDK) library.

Image Space to Euclidean Space Mapping
After extracting the visual saliency, we map the 
set of feature pixels back to the Euclidean space 
to guide sampling. To obtain efficient mapping, 
we employ a hardware-accelerated graphics pipe-
line (OpenGL in our implementation). When tak-
ing the snapshots, we record every pixel’s z-buffer 
value. These values help to unproject every pixel 

in the set of feature points back to 3 to serve as 
saliency points.

Visual-Perception-Guided Sampling
After generating the saliency points, we build a 
scalar saliency field over the entire surface domain 
to govern resampling.

Saliency Field Generation
We aim to distribute a user-specified number of 
samples over the mesh surface such that more 
points will be on the visually salient regions. Spe-
cifically, vertices near the saliency points should 
have higher visual importance. A value of 1.0 rep-
resents the highest visual importance. We assign 
values within [0, 1) to all vertices.

To generate the visual-saliency field, we use an 
advancing-front method. This method progressively 
moves a front L from the saliency points to their 
nearest-neighbor vertices on the surface and then to 
farther vertices until it has travelled all the vertices. 
Before the propagation, we insert the input model’s 
saliency points and vertices into a k-d tree to con-
duct the approximate nearest-neighbor search.

To govern the propagation, we construct the 
neighborhood table and copy it to the GPU side. 
During the advancing, we update the depth dvi  of 
every vertex vi, which indicates the shortest dis-
tance to that vertex’s nearest saliency point. We 
initialize the vertices’ depths as +∞ and set the 
saliency points’ depths to zero. Figure 4 shows the 
pseudocode for parallel propagation.

Then, we set the visual importance of every ver-
tex vi as

Iv d
i

vi= b ,

 1 Input: the set of saliency points 
�
F  and a model M

    Output: the propagated depths on vertices of M
 2 Set the depth values of all points in 

�
F  as zero;

 3 Set the depth values of all vertices on M as ∞;
 4 Insert all the points of 

�
F  into the front L;

 5 while L ≠ Ø do
 6   foreach vi ∈ M in parallel do
 7     if (vi is untraveled) AND (vi is the neighbor of a traveled point) then
 8       Set vi as a candidate vertex of ‘next-front’;
 9     end
10   end
11   Compact all ‘next-front’ vertices on M into a new set L′;
12   foreach vk ∈ L′ in parallel do
13     d dv j vk j⇐ +min { 1} for all neighbors vj of vk;
14     Set vk as travelled;
15   end
16   Update the front as L ⇐ L ′;
17 end
18 return;

Figure 4. The algorithm for parallel propagation of saliency fields. The depth dvi  of every vertex vi indicates 
the shortest distance to that vertex’s nearest saliency point.
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where b ∈ [0,1]. The larger b is, the smoother the 
field is. For the models in this article, we used b = 
0.7 and set the number of neighbors as k = 10 to 
balance speed and accuracy.

Adaptive Sampling
We integrate the saliency field over the surface and 
obtain a visual quantity Vs:

V Vs i

i

n

=
=
∑

1

,

where n is the number of triangles. Vi is the visual 
quantity of the ith triangle:

V A Ii i v

j
j=

=
∑1

3 1

3

,

where Ai is the triangle area and Ivj  is the vertices’ 
visual importance.

Suppose we plan to generate ns sample 
points on the input model. We calculate the 
number of samples, ni, in the ith triangle as 
n V V ni i s s= ( ) +



0 5. . We round ni to an integer, 

which introduces a signed quantization error Er. 
As the sampling proceeds triangle by triangle, this 
error accumulates and can’t be neglected. So, we 
correct the number of samples in the ith triangle to
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on all previously sampled triangles.

Uniform triangle sampling. We generate the samples 
in a triangle T with vertices vi, vj, and vk with the 
help of barycentric coordinate b = (bi, bj, bk), with 
bi, bj, bk ∈ [0, 1] and bi + bj + bk ≡ 1.

First, we generate two random numbers: r1 ∈ 
[0, 1] and r2 ∈ [0, 1]. We use them to form the 
barycentric coordinate:

b = { } { } − { } − { }min , ,max , min , , max ,r r r r r r r r1 2 1 2 1 2 1 21(( )

 
b = { } { } − { } − { }min , ,max , min , , max ,r r r r r r r r1 2 1 2 1 2 1 21(( ),

so that b represents a new sample point’s position 
in the triangle. When the number of expected 
samples in a triangle is small (for example, ni < 5), 
we employ this simple uniform triangle sampling 
because the distribution of samples according to 
the visual importance is contributed mainly by 
Equation 1.

However, when ni becomes big, the distribution 
should follow the visual importance evaluated on 
the vertices. Then, we employ adaptive triangle 
sampling.

Adaptive triangle sampling. Because we know the 
visual-importance values Ivi , Ivj , and Ivk  on vi, vj, 
and vk, we formulate the expected distribution of 
samples as a normalized function J(b), using b = 
(bi, bj, bk) and I b I b I b Ii v j v k vi j kb( ) = + + :

J
I d

Ib
b T

b

T

( ) =
( )

( )
∫

1
,

where I d A I I Iv v vi j kb T
T

( ) = ( ) + +( )∫ 3 , and d means 
derivative. For a sample point following J(b), we 

obtain bi and bj one by one. We later determine 
bk = 1 – bi – bj.

By introducing a marginal density of bi,

J b J b b b b dbM i i j i j j( ) = − −( )∫ , ,1
T

,

we formulate the cumulative density function 
(CDF) of bi as

F x J b dbM i i

x

1
0

( ) = ( )∫ .

According to Wolfgang Hörmann and his 
colleagues’ analysis, for a CDF F(…) of a random 
variable x, if another random variable r comes 
from a uniform distribution in [0, 1], the random 
variable z = F–1(r) comes from the same distribution 
of x.4 Specifically, for a random draw r1 ∈ [0, 1], 
x follows the expected distribution of bi when 
F1(x) = r1 is enforced. That is, we determine bi = 
x by solving

� � �ax bx cx I I I rv v vi j k
3 2

1+ + = + +( ) ,

with �a I I Iv v vj k i= + − 2 , 
�
b I I Iv v vi j k= − −( )3 , and  

�c I Iv vj k= +( )3 . Given the value of bi, the 
conditional distribution of bj is

JC(bj) = J(bi, bj, 1 – bi – bj)/JM(bi).

After generating the saliency points, we 
build a scalar saliency field over the entire 
surface domain to govern resampling.
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Then, we formulate the CDF of bj:

F y J b dbC j j

y

2
0

( ) ( )= ∫ .

Similarly, for a random draw r2 ∈ [0, 1], y follows 
the expected distribution of bj when F2(y) = r2 is 
enforced—that is, the solution of

λ γx x f2 + =
�

,

with l = ( ) −( )1 2 I Iv vj k , γ = − +I b I b Iv i v i vi k k , and

�
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1
2
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1
2

2 22(( )r2 .

The sampling we described before efficiently gen-
erates samples such that the region with high visual 
importance has more points, which follows the ex-
tracted perception cues. As Figure 5 shows, we can 
generate an adaptive distribution of samples by fol-
lowing the visual importance assigned at vertices.

A hybrid CPU/GPU implementation. To implement the 
sampling in a hybrid CPU/GPU manner, we first 
evaluate how many points to sample on each tri-

angle on the CPU. Then, we classify the triangles 
into those to sample uniformly and those to sam-
ple adaptively. Finally, we generate the samples for 
each group in parallel on the GPU and insert them 
in a 1D array with the help of the GPU’s atomic 
operator.

A Sample Distribution Optimization
The generated samples follow the indication 
presented by the saliency field. However, the 
samples aren’t distributed regularly enough to 
be linked to form well-shaped triangles (with 
nearly equal angles on vertices). To improve the 
distribution’s regularity, we employ an iterative 
method. After repositioning the sample points, 
we use the Tight Co-Cone algorithm (avail-
able at www.cse.ohio-state.edu/%7Etamaldey/
cocone.html) to connect them to form a two-
manifold triangular mesh.

AWLOP
Our algorithm to reposition sample points is akin 
to the projection operators used in point-sample 
surfaces—specifically, the locally optimal projec-
tion (LOP) operator. Given a data point set P = 
{pj} ⊂ 3, LOP projects a set of particles X = {xi} ⊂ 
3 onto the surface formed by P by approximating 
their L1 medians.

To improve the projected particles’ regular-
ity, Hui Huang and her colleagues presented a 
weighted locally optimal projection (WLOP) oper-
ator, which introduces a repulsion term to control 
the particle distribution.5 This pushes the particles 
so that their distances from their neighbors are 
nearly equal. In other words, this obtains a uni-
form distribution.

However, WLOP doesn’t consider the saliency 
field. So, we extended it to an adaptive version—
AWLOP—that incorporates the projected points’ 
visual-saliency values. Specifically, we obtain P 
from M by

 ■ uniformly sampling M if its number of vertices 
is small or

 ■ directly using the vertices of M if their number 
is large.

The particles in X are the sample points we ob-
tained earlier. We move every particle xi to a new 
position. Similarly to WLOP, the position update 
consists of two terms. The first attracts the particle 
to the given point set by the weighted local density,

oj j l
Pl j

= + −( )
∈( )∑1 q p p

p p\{ }
.

0.0

0.0 0.0

0.0

0.0 1.0

0.5

0.0 1.0

(a)

(b)

(c)

Figure 5. Generating adaptive samples. (a) We employ an inversion 
method3 according to the visual importance assigned to a triangle’s 
vertices. (b) 100 samples are generated on triangles. (c) 500 samples are 
generated.
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The second term repulses the particles away from 
other particles by a particle distribution density, 
wq. The updated position of xi is

x p
x p x p

x p x p
p

p
i j

i j j i j

i j j i j
P
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o

o
j

j
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where

W wq i q i q
Xq i

= −( ) −
∈( )∑ q x x x x

x x
, ...

\{ }

is the L2 norm, and q( ) /r e r h= −16 2 2
.5 q(r) is a rapidly 

decreasing smooth weight function, with the support 
radius h defining the influenced neighborhood’s size. 
m ∈ [0, 0.5) and h are two user-selected parameters 
for tuning the operator’s performance.

Unlike WLOP, AWLOP defines wq at x as a 
function of the visual importance I(cq) at the 
closest vertex of xq, where cq ∈ M. To allow visual-
saliency-guided particle distribution, the regions 
with high visual importance should have weaker 
repulsion forces. So, we make wq inversely propor-
tional to I(xq):

wq = 1/I(cq).

In our tests, we set m = 0.45 and h = 2Lavg, with 
Lavg being the data points’ average distance to their 
k-nearest neighbors. We chose k = 20 to balance 
speed and robustness.

Implementation Details and Comparisons
We implemented AWLOP in a hybrid CPU/GPU 
program. We constructed and updated the neigh-
borhood table of points in P and X on the CPU, 
using the ANN (Approximate Nearest Neighbor) 
library (available at www.cs.umd.edu/~mount/
ANN). The iterative updating of the particles’ 
positions executed on the GPU. This let us ef-
ficiently optimize the samples to a regular distri-
bution that could adapt according to the visual-
saliency field.

Figure 6 compares results for LOP, WLOP, and 
AWLOP. For the input hand model (see Figure 
6a) and its saliency field (see Figure 6b), we gen-
erated 10k points with an irregular distribution 
(see Figure 6c). The LOP and WLOP distributions 
(see Figures 6d and 6e) tended to be uniform no 
matter what the initial set was. AWLOP generated 
particles that adapted to the visual saliency (see 
Figures 6f and 6g).

We set wq as 1/I(cq) for Figure 6f and 1/I2(cq) 
for Figure 6g. The distribution in Figure 6g was 
more adaptive than the one in Figure 6f. However, 
it could have led to too sparse regions when the 
number of particles was very small. So, our all 
later tests used 1/I(cq).

Results and Discussion
We implemented our framework using C++ and 
the CUDA SDK library (you can access the imple-
mentation at www2.mae.cuhk.edu.hk/%7Ecwang/
GPURemeshByVisualCues.html). We ran it on a 
PC with an Intel Core i7 3.4-GHz CPU, 8 Gbytes 
of RAM, and a GeForce GTX 660 Ti GPU. All the 
tasks ran in parallel. Because our algorithms are 
highly parallel, the remeshing of all the examples 
took less than 10 seconds.

(a)

(d) (e)

(f) (g)

(b) (c)

Figure 6. Comparing locally optimal projection (LOP), weighted LOP 
(WLOP), and adaptive WLOP (AWLOP). For (a) a hand model and (b) its 
visual-saliency field, our sampling method generated (c) 10k points with 
an irregular distribution. The results for (d) LOP and (e) WLOP exhibited 
uniformly distributed particles. With AWLOP, we obtained a regular and 
adaptive distribution with (f) wq= 1/I(cq) and (g) wq = 1/I2(cq), where wq 
is the particle distribution density and I(cq) is the visual importance at 
the closest vertex of particle xq.
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Figure 7 shows the results for remeshing a kitten 
model (137k vertices) and a Max Planck bust model 
(199k vertices). We downsampled the original 
models to 5k vertices (kitten) and 10k vertices 

(Max Planck bust) according to the visual-saliency 
field. Finally, we optimized and meshed the sample 
points. Even after we downsampled the models 
to less than 4 percent of their original complex-

(a) (b) (c) (d) (e)

Figure 7. Comparing four remeshing approaches. We started with (a) a kitten model (approximately 137k vertices) and a 
Max Planck bust model (199k vertices). We remeshed them to 5k and 10k vertices, respectively, using (b) our approach, (c) a 
saliency-based approach,6 (d) an approach based on quadric error metrics (QEM),7 and (e) Simon Fuhrmann and his colleagues’ 
approach.8 The top row shows the shading models, the middle row shows the mesh models, and the bottom row shows line 
drawings generated by Doug DeCarlo and his colleagues’ method.2

Remeshing improves mesh quality in many computer 
graphics applications—for example, shape editing, ani-

mation, and numerical simulation. Recently, it has received 
considerable attention, and researchers have developed 
a variety of remeshing algorithms. Current approaches 
either compute the remeshing in parametric domains or 
directly generate it on 3D surfaces.

Parameterization-based approaches partition a pa-
rameter domain into sets of adjacent elements with the 
same specific properties. Xianfeng Gu and his colleagues’ 
approach cuts the surface into patches, parameterizes 
it using a signal-adapted technique, and represents 
the surface as a set of images that store the geometry 
and other attributes used for visualization.1 Vitaly 
Surazhsky and his colleagues’ remeshing algorithm is 
based on local parameterization.2 However, parameter-
izing free-form models is challenging and introduces 
severe distortions.

To alleviate these problems, researchers have proposed 
remeshing that directly samples 3D meshes. Greg Turk 
presented retiling that applies attraction-repulsion parti-
cle relaxation to resample an input mesh.3 Yongwei Miao 
and his colleagues introduced curvature-aware adaptive 

sampling,4 which can help produce high-quality meshes. 
Simon Fuhrmann and his colleagues devised curvature-
adaptive remeshing based on weighted centroidal 
Voronoi tessellation.5 However, none of these approaches 
takes visual perception into consideration. In addition, 
they are highly time-consuming and can’t be sped up by 
GPU-based computing.
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ity, the resulting shapes looked similar, and the 
vertex distribution adapted strictly to the visual-
saliency field.

We compared our approach with a saliency-
based approach,6 an approach based on quadric 
error metrics (QEM),7 and Simon Fuhrmann and 
his colleagues’ approach8 (with a contrast factor of 
1.5), using the implementation we mentioned ear-
lier. (For more on other remeshing approaches, see 
the sidebar.) To compare how these approaches pre-
serve the visual perception, we rendered the origi-

nal model and remeshed models into line drawings, 
using a state-of-the-art method2 in which the non-
photorealistic rendering relies on visual perception. 
The results in Figures 8 and 9 show that our ap-
proach best preserved visual saliency.

Using the input models’ nonphotorealistic ren-
derings as a reference, we compared the rendering 
results for the four approaches. We measured the 
quantitative similarity between the images using 
an image quality comparison metric simulating a 
human vision system.9 Table 1 shows the results 

(a)

(b)

(c)

(d)

(e)

Figure 8. Remeshing a rocker arm model. We remeshed (a) the original model from 121k to 10k vertices 
using (b) our approach, (c) mesh saliency, (d) QEM, and (e) Fuhrmann and his colleagues’ approach. The left 
column shows the shading models, the middle column shows the visual saliency extracted by DeCarlo and 
his colleagues’ method, and the right column shows the mesh models. Our approach best preserved visual 
saliency.
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in the “visual error” column. A higher number 
indicates a model with more visual-perception 
features remaining. The results indicate that our 
approach produced the best remeshing, regarding 
visual saliency.

Regarding the computation times listed in Table 
1, our approach was the fastest by far for input 
models with many vertices. This was because 
many steps of our remeshing pipeline are highly 
parallelized and run on a GPU.

We obtained the geometric error listed in Table 1 
with the publicly available Metro tool (http://vcg 
.isti.cnr.it/activities/surfacegrevis/simplification/
metro.html). The results weren’t consistent with 
those for the visual error. Our approach’s mean 
and maximum errors were similar but were greater 
than those for mesh saliency and QEM. This sug-
gests that for applications focusing on rendering 
quality, existing geometric-error metrics might 
not fully represent visual cues.

As we mentioned before, our approach works 
with meshes with topology problems; see the 
zoomed-in views of the two polygon soup models 
in Figure 10. This is because our algorithms don’t 
rely strongly on the input models’ local connectiv-
ity. Figure 10 also shows the remeshing results for 
the two models.

Because our approach extracts the visual-
saliency measurement in the 2D image space, 

the selection of snapshots will influence the mea-
surement. As we mentioned before, we use six or-
thogonal views to generate the snapshots. So, this 
process might miss important features that aren’t 
visible in those views. In the current implementa-
tion, users select the model’s orientation in the 
front view, then our approach automatically gen-
erates the other five views. We plan to automate 
orientation selection by using visual cues. We’ll 
also explore techniques for adaptive viewpoint se-
lection to further improve the remeshed models’ 
fidelity.

Finally, our framework isn’t limited by the par-
ticular type of perception cue. So, any other ex-
traction algorithms based on visual-perception 
cues can be easily plugged into it. 
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(a)

(b)
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(d)

(e)

Figure 9. Remeshing a bulldog model. We remeshed (a) the original 
model from almost 1M triangles to 20k vertices using (b) our approach, 
(c) mesh saliency, (d) QEM, and (e) Fuhrmann and his colleagues’ 
approach. The left column shows the shading models, the middle 
column shows the extracted line drawings, and the right column shows 
the mesh models. Our approach best preserved the visual saliency (see 
the model’s eyes, nose, tongue and toe, indicated by the red boxes in 
Figure 9b). Moreover, our approach took only about 8 seconds with the 
help of the GPU’s highly parallel computational power.
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horse polygon soup model is courtesy of Tao Ju. We 
downloaded the kitten, rocker arm, Max Planck, 
and bulldog models from the AIM@SHAPE shape 
repository.

References
 1. J.T. Todd, “The Visual Perception of 3D Shape,” 

Trends in Cognitive Sciences, vol. 8, no. 3, 2004, pp. 
115–121.

 2. D. DeCarlo et al., “Suggestive Contours for 
Conveying Shape,” ACM Trans. Graphics, vol. 22, no. 
3, 2003, pp. 848–855.

 3. F. Cole et al., “How Well Do Line Drawings Depict 
Shape?,” ACM Trans. Graphics, vol. 28, no. 3, 2009, 
article 28.

 4. W. Hörmann, J. Leydold, and G. Derflinger, 
Automatic Nonuniform Random Variate Generation, 
Springer, 2004.

 5. H. Huang et al., “Consolidation of Unorganized 
Point Clouds for Surface Reconstruction,” ACM 
Trans. Graphics, vol. 28, no. 5, 2009, article 176.

 6. C.H. Lee, A. Varshney, and D.W. Jacobs, “Mesh 
Saliency,” ACM Trans. Graphics, vol. 24, no. 3, 2005, 
pp. 659–666.

 7. M. Garland and P.S. Heckbert, “Surface Simplification 
Using Quadric Error Metrics,” Proc. Siggraph, 1997, 
pp. 209–216.

 8. S. Fuhrmann et al., “Direct Resampling for Isotropic 
Surface Remeshing,” Proc. 2010 Vision, Modeling, 
and Visualization Workshop, 2010, pp. 9–16.

 9. Y.-J. Liu et al., “Image Retargeting Quality Assessment,” 
Computer Graphics Forum, vol. 30, no. 2, 2011, pp. 
583–592.

Lianping Xing is a PhD candidate in the Chinese Univer-
sity of Hong Kong’s Department of Mechanical and Auto-
mation Engineering. Her research interests include computer 
graphics, CAD, and geometric processing. Xing received an 
MS in computer science from Tianjin University. Contact 
her at lpxing@mae.cuhk.edu.hk.

Xiaoting Zhang is a PhD student in the Chinese University 
of Hong Kong’s Department of Mechanical and Automation 
Engineering. Her research interests include geometric model-
ing, image processing, and computer vision. Zhang received 
an MPhil in mechanical engineering and automation from 
the Harbin Institute of Technology. Contact her at xtzhang@
mae.cuhk.edu.hk.

Charlie C.L. Wang is an associate professor in the Chinese 
University of Hong Kong’s Department of Mechanical and 
Automation Engineering. His research interests are geomet-
ric modeling, design and manufacturing, and computational 
physics. Wang received a PhD in mechanical engineering 
from the Hong Kong University of Science and Technology. 

Table 1. Results for four remeshing approaches.

Model

No. of vertices

Approach Time (sec.)*
Visual-

similarity error9

Geometric error†

Input Result Max. Mean

Kitten 
(Fig. 7)

137k 5k Ours 3.635 0.9247 0.834 3.56 × 10–2

Mesh saliency6 3,882 (×1,068) 0.9110 0.178 1.78 × 10–2

Quadric error metrics (QEM)7 9.752 (×2.7) 0.8984 0.189 1.44 × 10–2

Fuhrmann and colleagues8 126.800 (×35) 0.9048 3.140 2.640

Max Planck 
bust 
(Fig. 7)

199k 10k Ours 5.384 0.9272 1.250 0.158

Mesh saliency 11,740 (×2,180) 0.9070 0.338 3.13 × 10–2

QEM 112 (×21) 0.8936 0.640 2.77 × 10–2

Fuhrmann and colleagues 7,403 (×1,375) 0.9021 1.750 1.360

Rocker  
arm 
(Fig. 8)

120k 10k Ours 4.148 0.9536 2.80 × 10–3 1.66 × 10–4

Mesh saliency 4,539 (×1,094) 0.9401 9.05 × 10–4 7.80 × 10–5

QEM 9.361 (×2.3) 0.9399 9.19 × 10–4 6.10 × 10–5

Fuhrmann and colleagues 26.210 (×6.3) 0.9367 3.75 × 10–3 2.77 × 10–4

Bulldog 
(Fig. 9)

493k 20k Ours 8.578 0.9655 1.370 0.143

Mesh saliency 104,781 (×12,215) 0.9535 0.602 4.03 × 10–2

QEM 301 (×35) 0.9573 0.878 3.79 × 10–2

Fuhrmann and colleagues 654 (×76) 0.9334 11.500 6.940

Horse 
(Fig. 10)

203k 10k Ours 4.526 — 2.58 × 10–3 9.10 × 10–5

Igea 
(Fig. 10)

806k 6k Ours 5.755 — 9.33 × 10–4 3.90 × 10–5

* The numbers in parentheses show our approach’s speedup compared to mesh saliency, QEM, and Simon Fuhrmann and his colleagues’ approach.
† To measure the geometric error, we used the publicly available Metro tool.
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(a)

(b)

Figure 10. Remeshing two polygon soup models with topology problems (see the zoomed-in views). (a) We remeshed a horse 
model with 204k vertices into a two-manifold triangular mesh with 10k vertices. (b) We remeshed an Igea model with 806k 
vertices into a mesh with 10k vertices. In both cases, we preserved the visual saliency.
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