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Abstract- This paper describes a corner detection method 
in a pseudo-random structured light pattern. In the algorithm, 
the image is firstly convoluted with a weighted Gaussian 
mask (WGM) in which the symmetry property between two 
neighboring rhombic elements is considered. As a result, the 
proposed method is more suitable to detect the X shape corner 
in the structured light pattern. Then a non-maximal suppression 
process is carried out to find the candidates for the corner. 
Record the times of each position being the candidate in 
different size of WGMs. Finally, the fuzzy c-means (FCM) 
algorithm is conducted to determine the threshold for being the 
corner. Some experiments have been conducted to demonstrate 
the effectiveness of the proposed method. 

I. INTRODU CTION 

C ORNER detection is an important task in various com­
puter vision, image processing, and pattern recognition 

systems since corners are significant features of an image. 
Applications that rely on corners include motion tracking, 
object recognition, 3D object modeling, stereo matching, etc. 

Considerable attentions have been paid on corner detec­
tion, and a large number of successful detectors have been 
proposed. Some widely applied approaches in the literature 
are the LoG [I], Harris [2], and SUSAN [3] detectors. 
Well-known as one of the earliest successful method, Harris 
corner detector calculated the first-order derivatives of the 
image along horizontal and vertical directions, with which 
a 2 x 2 structure tensor was formed. Then the corner 
detection was accomplished by analyzing the eigenvalues of 
the structure tensor at each pixel. SUSAN (Smallest Univalue 
Segment Assimilating Nucleus) detector is another popular 
used scheme. Recently, some novel methods [4], [5] have 
been proposed, and satisfying results are achieved. 

In this paper, we consider the corner detection problem in a 
pseudo-random structure light pattern [6], [7]. The structured 
light pattern is generated from a pseudo-random array of size 
65 x 63 as shown in Fig. 1. By the property of the pattern, 
every window of size 2 x 3 in the pattern is unique upon 
the colored elements the window is composed of. Since the 
pseudo-random array is constructed over GF(4) (Galois Field 
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Fig. 1. Pseudo-random pattern consists of 65 X 63 rhombic elements colored 
in Red, Green, Blue and Black, and grid-point between pattern elements are 
defined as the pattern features and then encoded. 

with 4 elements), we use 4 different colors (Red, Green, Blue, 
and Black) for the foreground in the pattern, and the white 
color for the background. While the traditional methods use 
the centroids of pattern elements as the feature points, in 
our system we use the grid-points between the neighboring 
rhombic elements as the feature points [8], [9]. 

Observing Fig. I, we may find that the grid-points between 
the neighboring rhombic elements actually are X shape cor­
ners. However, some traditional methods can not accurately 
detect the corners in this situation. The reasons lie in that the 
rhombic elements are distorted due to the change of object 
surface. Furthermore, the illumination and the color of the 
object surface also affect the detection results. 

In this work, we propose a corner detection method for the 
pseudo-random structured light pattern. The image is firstly 
convoluted with a weighted Gaussian mask (WGM). Dislike 
the ordinary Gaussian mask, the developed WGM considers 
the symmetry property between two neighboring rhombic 
elements. Then a non-maximal suppression process is carried 
out. Record the positions of the left points. These points are 
viewed as the candidates for the real corners. Change the 
size of weighted Gaussian mask and repeat the former steps. 
The times that each position being the candidate in fact is the 
possibility for being a corner point. Finally, fuzzy c-means 
(FCM) is conducted to determine the threshold for being the 
corner. Experiments on different objects are conducted to 
demonstrate the effectiveness of the proposed method. 

The rest of this paper is organized as follows: The pro­
posed method is given in Section II, and some experiments 
are carried out to evaluate the proposed method in Section 
III. Finally, Section IV concludes the paper. 
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Fig. 2. Example images obtained from pseudo-random structured light 
system. 

II. METHOD 

In this section, we will describe the proposed method in 
details. The pattern obtained from pseudo-random structured 
light system are displayed with color image, as shown in Fig. 
2. The color image is firstly converted to gray-scale image 
for corner detection. 

A. Weighted Gaussian Convolution 

From Fig. 2, it can be observed that any corner-point 
on the pattern generation plane of the projector then has 
a local circular neighborhood presenting perfect two-fold 
symmetry. We develop a mask to measure this property. The 
mask is an anti symmetric matrix whose main diagonal and 
secondary diagonal diagonal elements are set to be o. And 
the two diagonal lines divide the matrix into four parts. In 
the developed matrix, the elements in the two horizontal parts 
are set to be 1, while the elements in the two vertical parts 
are set to be -1. For example, we show a mask with size 
7 x 7 as following: 

0 -1 -1 -1 -1 -1 0 
1 0 -1 -1 -1 0 1 
1 1 0 -1 0 1 1 

M(x,y) = 1 1 1 0 1 1 1 
1 1 0 -1 0 1 1 
1 0 -1 -1 -1 0 1 
0 -1 -1 -1 -1 -1 0 

Note that some corner points, the rhombic elements are 
distorted due to the change of object surface. To reduce the 
affect of distortion, we multiply the elements in the above 
mask with different coefficients according the positions. The 
elements, which are closed to the center, are with larger 
coefficients. In this paper, we make use of the following 2D 
Gaussian function to generate the coefficients: 

G(x, y, 0") = �2 e-(x2+y2)/2a2• ( 1) 
27T0" 

The final mask, referred to as weighted Gaussian mask 
(WGM) , is given as following: 
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Fig. 3. (a) Traditional Gaussian Mask; (b) Weighted Gaussian Mask. 

where -* denotes the array multiply operation. Fig. 3 illus­
trates an example of WGM. Fig. 3(a) shows a traditional 
Gaussian mask with size 17 x 17, and Fig. 3(b) shows the 
WGM with the same size. 

Then the image f(x, y) is convoluted with WGM, 

F(x, y, 0") = WGM(x, y, 0") * f(x, y), (3) 

where * is the convolution operation in x and y. In the corner 
position, the absolute value of F(x, y, 0") is maximal in a 
local region. 

B. Non-Maximal Suppression 

A non-maximal suppression is followed by the weighted 
Gaussian convolution. Suppose the size of the used WGM 
is nl x nl. The non-maximal suppression is performed in 
a (nl + 2) x (nl + 2) region D. Let MaxF and MaxSl 
denote the maximal value of F(x, y, 0") and the region D 
respectively. Then the non-maximal suppression is conducted 
as following: 

F�, (x, y, 0") = { �: if F(x, y, 0") > �MaxSl and ?rMaxF; 
else. 

(4) 

From Eq.(4), F(x, y, 0") is restricted to larger than �D 
such that more points around the corner can be selected to 
be candidates. On the other hand, F(x, y, 0") is also required 
to bigger than ?rMaxF with the purpose of eliminating 
some false corners. The positions of non-zero elements in 

F�, (x, y, 0") are candidates of corners. 

C. Corner Determination using FCM 

In this part, we will reveal how to detect corners making 
use of FCM. To begin with, the FCM algorithm is briefly 

WGM(x, y, 0") = M(x, y). * G(x, y, 0"), (2) reviewed. 
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1) FCM algorithm: FCM is an unsupervised clustering 
technique, and has been successfully applied to feature 
analysis, target recognition, classifier designs, and image 
segmentation etc. Let X = (Xl, X2, ... , XN) denotes N 
samples to be partitioned into c clusters. c is assumed to 
be known. FCM aims to minimizes the objective function 
defined as follows [ 10]: 

N c 

JFCM = L L u0Ilxj - vi112, 
j=li=l 

(5) 

where Uij represents the membership of the sample X j in the 
ith cluster, Vi is the ith cluster center, m is a constant, and 

II· II represents the standard Euclidean distance. The param­
eter m is a weighting exponent on each fuzzy membership, 
and is usually set to be 2. 

The objective function is minimized when the samples, 
which are closed to the centroid of their clusters, are assigned 
high membership values, while low membership values are 
given to pixels with data far away from the clustering 
centroid. The membership function represents the probability 
that the sample belongs to a specific cluster. 

Taking the first derivatives of the objective function with 
respect to Uij and Vi and setting the equations to 0 will obtain 
necessary conditions for Eq. (5) to be minimized. Using a 
Picard iteration through these two necessary conditions, the 
membership functions and cluster centers are updated by the 
following respectively: 

(6) 

and 

(7) 

Beginning with an initial value for each cluster center, the 
FCM converges to a solution. For more details of FCM, refer 
to [ 1 1]. 

2) Corner Determination: As aforementioned, 

F�, (x, y, 0") = 1 indicates that the position (x, y) is a 
candidate for a corner with a nl x nl WGM. Similarly, 
we may obtain F�2(X,y,0"), F�3(X,y, 0"), ... , F�k(X,y,O") 
by setting the size of the WGM to be n2 x n2, n3 x 

n3, ... , nk x nk. 
Then calculate the following formula 

k 
I(x, y) = L F�i (x, y, 0"). (8) 

i=l 

I(x, y), in fact, is the times that the position (x, y) being the 
candidate for a corner. The more times, the higher possibility 
to be a corner. Based on I(x, y), we apply FCM to determine 
the threshold for being a corner. Finally, we may obtain the 
accuracy position of the corner. 
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III. EXPERI MENTAL RESU LTS 

In this section, experiments are carried out to evaluate the 
performance of the proposed method. The structured light 
system in our experiments consisted of a DLP projector of 
resolution 1024 x 768 and a camera of resolution 1500 x 1000 
pixels, both being off-the-shelf equipments. As shown in Fig. 
2, the experiments are conducted on a spherical object and 
a real human face respectively. 

Two commonly used methods, Harris and SUSAN detec­
tors are also conducted for a comparison. Fig. 4 illustrates 
the corner detection results of all the methods for the spher­
ical object. We can find that Harris and SUSAN detectors 
usually detect the points beside the corner. The proposed 
method outperforms over the other two methods. The corner 
detection results of all the methods for the real human face is 
given in Fig. 5. Harris detector correctly find many corners 
in this situation, and the proposed method obtains the best 
performance. 

IV. CONCLUSIONS 

In this article, we have presented a corner detection 
method for the rhombic pseudo-random pattern. To consider 
the symmetry property between two neighboring rhombic 
elements, we propose a weighted Gaussian mask (WGM). 
The corners are detected by weighted Gaussian convolution, 
non-maximal suppression, and FCM cluster steps. Some 
experiments have been conducted to demonstrate the effec­
tiveness of the proposed method. Our future work will aim 
to improve the robustness of the proposed method. 
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Fig. 4. Comer detection results on a spherical object of three methods: 
(a) Harris comer detector; (b) SUSAN comer detector; (c) proposed comer 
detector. 
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Fig. 5. Comer detection results on a real human face of three methods: 
(a) Harris comer detector; (b) SUSAN comer detector; (c) proposed comer 
detector. 


