
Direct Computation of Minimal Rotation for Support Slimming

Kailun Hu, Xiaoting Zhang and Charlie C. L. Wang†

Abstract— To reduce the usage of supporting structure in
additive manufacturing, an orientation-driven shape optimizer
was developed in our prior work [Hu et al. 2015] which
employs a volumetric mesh enclosing the input 3D models
as the domain of computation. The orientation of a model is
computed indirectly by surface of the volumetric mesh. In this
paper, we extend our indirect computation to an approach that
the computation is directly based on the information of input
models by an algorithm using incremental linear programming
and K-means clustering. The performance of this approach
is decoupled from the shape similarity between the volumetric
mesh and the input model. As a result, representations obtained
from simpler volumetric decomposition such as voxels can be
adopted as the domain of computation.

I. INTRODUCTION

Additive manufacturing (AM) technology, also called 3D

printing, has emerged as one of the most important ap-

proaches for realizing fast fabrication of freeform solids.

Stereolithography Apparatus (SLA) and Fused Deposition

Modelling (FDM) are two widely used approaches in AM

as they achieve very good balance between the cost and the

quality. Both SLA and FDM fabricate models in a layer-

upon-layer manner (see Fig.1 for an example of SLA), where

supporting structures (also simply called support) need to be

added during the printing process. Specifically, the printing

material cannot be deposited on a layer there is insufficient

material on the previous layer. Overhangs with large hanged

area can easily collapse under gravity. The problem is solved

by adding supports to the originally designed models. When

the support is fabricated by a dissolvable material that is

different from the one used to fabricate the designed model,

the support can be removed by a post-processing step [1].

However, there are many machines such as SLA and low-

cost FDM that are only able to fabricate models with single

material. The accessorial supporting structure brings in many

problems, including the waste of material, the difficulty of

removal, the damage of surface at connected points.

In practice, engineers always modify the parts to be

fabricated into a shape be more ‘self-supported’. A shape

optimizer was developed in our prior work [2] to automate

this step to improve the manufacturability by an iterative

deformation procedure. As will be briefed in Section II, the

deformation-based optimization is formulated as repeatedly

applied 1) a local step of orientation correction to drive the

deformation followed by 2) a global step for blending the

*This work was partially supported by HKSAR Innovation and Technol-
ogy Fund: ITS/247/11 and ITS/060/13.

All authors are with the Department of Mechanical and Automation
Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong

†Corresponding Author (Email: cwang@mae.cuhk.edu.hk)

Fig. 1. Layer-based manufacturing by SLA (top) and FDM (bottom):
supports must be added to avoid the collapse of overhangs.

Fig. 2. Flowchart overview of our shape optimization algorithm.

oriented computation units (i.e., tetrahedra) to enforce the

continuity of a deformed model. For a given mesh model M,

the local rotation applied in the local step of [2] is computed

by the normal faces of tetrahedra that enclose the faces of

M. As a result, shape and quality of the volumetric mesh

T have a direct influence on the results of optimization.

When using a tetrahedral model as shown in Fig.2 that is

simply obtained from the voxelization of M, the approach

presented in [2] cannot give a correct result. To overcome

this limitation, we develop a new local step in this paper to

re-orientate tetrahedra according to the orientations of faces

on M – i.e., direct computation of minimal rotation.

A. Problem Statement

Given a printing direction d̂p and the self-supporting

coefficient τ in accordance with the maximal self-supported

angle αmax as τ = sin(αmax), a face on M whose normal

n̂ satisfy

2015 IEEE International Conference on
Automation Science and Engineering (CASE)
Aug 24-28, 2015. Gothenburg, Sweden

978-1-4673-8183-3/15/$31.00 ©2015 IEEE 936

n̂ · d̂p + τ < 0

is named as risky face. Other faces with n̂ · d̂p + τ ≥ 0 are

considered as safe faces. Each of the tetrahedra containing

faces of M are detected to see if there is any risky faces

inside. If so, the tetrahedron is called risky tetrahedron;

otherwise, it is safe.

What enclosed in a risky tetrahedron is a polygonal mesh

P ⊂ M. For a tetrahedron with P = {fi}, our problem to

be solved as the local step in shape optimizer is to find a

minimal rotation applied to this tetrahedron to make all the

risky faces safe.

argmin
r̂,θ

E(R(r̂, θ), I)

s.t., ∀fi ∈ P, (R(r̂, θ)n̂i) · d̂p ≥ −τ
(1)

where n̂i is the normal of face fi, θ is the minimal rota-

tion angle and r̂ is its corresponding rotation axis. Here,

E(R(r̂, θ), I) measures how significantly R(r̂, θ) deviates

from I in terms of rotation. This is an extension of our

prior work published in [2], in which the minimal rotation

computation only considered one or two faces. The prob-

lem becomes more challenge when the minimal rotation is

computed by the orientations of faces in P .

B. Contribution

The major technical contribution of this paper is a a

direct minimal rotation computation approach that is based

on the original mesh encoded in each volumetric element. By

this direct approach, the results of orientation-driven shape

optimizer are not sensitive to the shape of the volumetric

computation domain. We even can use the simple tetrahedral

meshes generated from a voxel-set as the domain of compu-

tation. The direct computation of minimal rotation consists

of two steps:

• A novel incremental LP solver to find the minimal

rotation based on the original mesh enclosed in each

tetrahedron.

• An area-weighted K-means clustering method to find

the proxies of original mesh enclosed in each tetrahe-

dron.

In the first step, the more information from the original mesh

we use, the more precise resultant minimal rotation we can

get from the incremental LP solver. Ideally, we wish can use

the normal vectors of all faces enclosed in a tetrahedron.

In such scenario, if a feasible solution can be found, the

result minimal rotation is exact. However, in many cases,

we cannot find such an exact solution as there are too many

faces encoded in one volumetric element. For these cases,

an area-weighted K-means clustering method on the Gauss

sphere is employed on these parts of mesh to find the optimal

approximation. Our method tries to find the largest number

of the representative proxies on a Gauss sphere by K-means

clustering, where the minimal rotation can be find by the

incremental LP solver based on these proxies.

C. Related Work

This review does not aim for completeness, but rather

provides an overview of the scope of techniques that our

work is related to.

Recently, shape and topology optimization techniques

have been used in AM applications. Topology optimization

is conducted in [3], [4] to compute interior structure of a

given model to have a better mechanical property. Shape

optimization is employed in [5] and [6] to make a given

model have a balance and an optimal moment of inertia

respectively. Moreover, an optimal printing direction that will

maximise the mechanical strength of a printed model is com-

puted in [7] by cross-sectional structural analysis. However,

there is few approach available in literature considering how

to optimise the shape to reduce the supporting structure. This

paper presents an extension of our prior work [2] by directly

computing minimal rotations based on the faces of an input

model.

Following [2] , the local/global shape optimization strategy

is conducted in this paper to compute an optimal shape

that is more self-supported. Starting from [8], [9], many

deformation approaches have been developed in the literature

of computer graphics to obtain a fast converge of non-linear

optimization (e.g., [10]–[12]). The novelty here is to use

a new re-orientation scheme to drive deformation in the

optimization framework.

The rest of this paper is organized as follows. Section II

briefly introduces framework of deformation-based optimiza-

tion for support slimming. The details about how to compute

a minimal rotation based on the faces on the input model

are presented in Section III. Experimental results and the

method to preserve global features are discussed in Section

IV. Lastly, our paper ends with the conclusion section.

II. DEFORMATION BASED OPTIMIZATION

The shape optimization is taken in a local/global defor-

mation framework. The deformation of a volumetric mesh

T enclosing the input model M is driven by a local rigid

transformation Lt applied to each tetrahedron t. Without loss

of generality, four vertices on a tetrahedron can be used to

construct a local tensor as Vt = [v1 −v4 v2 −v4 v3 −v4].
Then, the as-rigid-as-possible (ARAP) energy on the whole

volume mesh can be defined as

EARAP =
∑

t

wt‖V
new
t − LtV

0

t ‖
2

F , (2)

where ‖ · ‖F is the Frobenius norm, V0

t is based on the

positions of vertices on in the input volumetric mesh, and

wt is the volume of t serving as the weight. Minimizing

the ARAP energy defined in Eq.(2) can be converted into a

least-square problem, where our formulation makes its com-

putation’s factorization re-usable. After updating the vertices

of T in each iteration, the shape of M can be deformed

accordingly by applying the barycentric coordinate. Details

can be found in [2].

937

Fig. 3. An illustration for the feasible region Ht (see the blue region on
the Gauss sphere), which is commonly determined by a set of half-spaces.
Edges and corners used in the incremental LP are also shown.

The rigid transformation, Lt, applied in our optimization

framework is a cascade of the transformation M, which

simulates an elasticity to deform a tetrahedron t back into

its original shape V0

t , and the minimal rotation R(r̂, θ)
determined by Eq.(1). The transformation M can be obtained

by first applying a singular value decomposition on Q =
Vc

t (V
0

t)
−1 to obtain Q = UΣWT and then M = UWT .

The optimization to minimize the energy defined in Eq.(2)

is in a least-square form min ‖Ax−b‖2. Also, the coefficient

matrix of the global least-square system, A, is derived from

Vt and keeps invariant during the iterations. The strategy

of re-used decomposition can be employed to speed-up

the computation. Specifically, the least-square problem can

be determined by solving ATAx = ATb. When LU-

decomposition is applied, the decomposition only need to

be conducted once in the first iteration. Computation in the

later iterations can use the same lower and upper triangular

matrices as ATA is invariant among all iterations.

III. COMPUTATION OF MINIMAL ROTATION

This section presents the details of our method to compute

the minimal rotation of a tetrahedron t by using the faces on

the input mesh model inside t – that is P .

A. Algorithm

For each face fi on P , the set of possible printing

directions that make fi safe can be described as a half-space

Hi = {p | ∀p ∈ S
2, p · n̂i + τ ≥ 0}.

For a risky tetrahedron t with n faces inside P , the intersec-

tion of all His , which is denoted by Ht = H1 ∩ · · · ∩ Hn,

actually defines a convex polygon on the Gauss sphere. The

problem defined in Eq.(1) can then be interpreted as rotating

Ht to contain d̂p with a minimal rotation on the Gauss

sphere if it exists. Specifically, we first quickly check whether

Ht = ∅. If Ht 6= ∅, a minimal rotation is found to let d̂p

be located on the boundary of Ht, denoted by ∂Ht. When

Ht = ∅, an approximation of the polygonal patch P inside

t should be generated. The minimal rotation is computed on

this approximation.

The minimal rotation can be interpreted as the closest

distance from Ht to point d̂p on the Gauss sphere. Thus, we

propose to use an incremental LP solver to quickly find out

whether the convex polygon Ht exists on the Gauss sphere,

meanwhile the closest point ĉ ∈ ∂Ht to d̂p is reported.

Note that, after obtaining the point ĉ, the minimal rotation

is defined as a rotation around the axis r = d̂p × ĉ that

makes d̂p be consistent with ĉ. For those case that Ht = ∅,

we conduct an area-weighted K-means clustering on the

Gauss sphere to find an approximation of P , P̄ . Then, the

incremental LP is applied to determine the minimal rotation

by the half-spaces defined by P̄ . Suppose there are m clusters

in P̄ , the greater m is the more accurate approximation is

obtained. Moreover, the new common region H̄t defined by

P̄ must be feasible (i.e., H̄t 6= ∅).

B. Incremental Linear Programming

Given a polygon P with n, its corresponding Ht on the

Gauss sphere is a convex polygon that consists of boundary

edges {ei} and the corner points {vi,j}, where a corner point

vi,j is formed by the intersections of two edges ei and ej (see

also the illustration in Fig.3). Specifically, we can determine

the corner points of Ht by

• computing the intersection points for any pair of two

half-spaces Hi and Hj on the Gauss sphere;

• checking if the point vi,j is in the feasible region by

vi,j · n̂k + τ ≥ 0 (∀fk ∈ P). (3)

Only the feasible intersection points satisfying the above

condition for all faces are kept as the corner points.

If no intersection point satisfies the constraints in Eq.(3), it

means there is no solution for the minimal rotation problem

defined in Section I-A (i.e., Ht = ∅). The surface patch P
must be approximated by m proxies with m < n to compute

an approximate solution for minimal rotation, which will be

detailed in the section below.

When Ht 6= ∅, the Geodesic distances between d̂p and

all the corner points are computed. The nearest corner point

vc of d̂p is found. To further obtain a more accurate nearest

point on ∂Ht, we compute the closest points on the two

edges forming vc. The real nearest point ĉ can then be

determined among these three points.

Geodesic Distance: Using Euclidean distance to evaluate the

distance between two points on the Gauss sphere is inappro-

priate. Geodesic distance is employed in our computation.

For two points n̂a and n̂b on the Gauss sphere, the distance

can be calculated by

Dg(n̂a, n̂b) = arccos(n̂a · n̂b). (4)

C. Area-Weighted K-means Clustering

For a tetrahedron t containing many faces, Ht = ∅ is often

found. An area-weighted K-means clustering is then applied

to approximate the normals of n faces in t by fewer number

of proxies. As illustrated in Fig.4, the normals of 32 faces

enclosed in a tetrahedron can be clustered into 3 regions with

c1, c2 and c3 as centers of these regions. Here, we define the

center point of a region as the region’s proxy as it minimizes

the approximation energy between the points in this region

and the proxy. These proxies can then be employed as the

input of our incremental LP to find the approximate minimal

rotation.

938

Fig. 4. An illustration of K-means clustering with 3 clusters on the Gauss
Sphere: cis are the proxies of the normals on the Gauss Sphere.

Area-Weighted Centroid: For a given set of points on the

Gauss sphere (denoted by C), the centroid of points in C is

cC = argmini∈C D
2

g(n̂i, cC).

To simplify the computation, an area-weighted average is

employed in our implementation as

c̄C =
∑

i∈C

win̂i/
∑

j∈C

wj (5)

where wi is the area of a face fi serving as the weight. Note

that, the approximate centroid computed by Eq.(5) in general

has to be further normalized to serve as a proxy of C on the

Gauss sphere.

Clustering Algorithm: For a tetrahedron encoding n faces

of the original model (their normals are N = {n̂1, n̂2,...,

n̂n} and the respective weights are w1, w2,..., wn), the area-

weighted K-means algorithm classifies the given faces into

k clusters as follows.

• Randomly select k points from N to serve as the seeds

for clustering (i.e., the k-the random point is temporarily

used as the centroid ck for the cluster Ck).

• For each point n̂i, compute its distances to n seeds (i.e.,

ck) and assign it to the cluster of its nearest seed.

• Update the centroid of each cluster by the classification

generated in the above step.

• Go back to step 2) until the terminal condition has met.

We observe a very fast converge on this K-means clustering

algorithm. Moreover, a small k is usually used because we

incrementally try to enlarge k until an infeasible Ht is found.

Termination Condition: The termination criterion is the

same as what is employed in the traditional K-means cluster:

i) the maximal allowed number of iterations (e.g. 100 is

employed in our implementation) and ii) there is trivial

change on the centroids’ positions.

IV. RESULTS AND DISCUSSION

We have implemented this approach by C++ together with

the Eigen library [13] as the numerical solver. All the tests

are computed on a PC with Intel Core i7-3770 3.49GHz

GPU and 8GB RAM. Only single thread is employed in

our current implementation. Computation has been taken on

volumetric meshes with up to 10k vertices and it can be

completed within one minute on all examples.

Fig. 5. Orientation-driven optimization taken on the Armadillo model to
reduce the need of supporting structures: (left) before optimization (AP: 74)
and (right) after optimization (AP: 42). Supporting structures generated by
MeshMixer are displayed in colorful trusses.

Fig. 6. Orientation-driven shape optimization of the Bunny model: (left) the
input model needs to add supports with 267 APs and (right) the optimized
model and its supporting structure with 189 APs.

A. Experiments

A few examples have been tested in our experiments. We

have tried different support generation algorithms (ref. [14],

[15]) to verify the resultant models generated by our method.

Similar number of anchor points – the contact points connect-

ing the original model and the supporting structure – can be

observed. To be fair in the verification, we count the number

of AP generated by the commercial software, Autodesk R©

MeshMixerTM, as an indicator to quantify the improvement

brought by using our approach.

• Armadillo: The Armadillo model shown in Fig.5 is

optimized in the computational domain generated from

voxelization. The self-supporting angle, αmax, is set as

zero in our computation. Comparing to our prior work

[2], the model generated by direct minimal rotation (i.e.,

the method presented in this paper) is less deformed.

Local details on the input model are well-preserved by

our shape optimization. The number of AP is reduced

from 74 to 42 (i.e., 43.3% reduction of surface artifacts

can be found).

• Bunny: The Bunny model shown in Fig.6 is optimized

with αmax = 0◦ again in the voxelized computation

domain. In this example, the ears of Bunny become

upright after the shape optimization, which proves the

effectiveness of our direct approach. 267 APs are gen-

erated by MeshMixer on the original model, which can

be reduced into 189 that is 29.2% reduction.

• Dinosaurus: The original and the optimized Dinosaurus

models can be found in Fig.2. This model is optimized

with αmax = 15◦. The Dinosaurus ‘rises up’ its head

and tail meanwhile putting down its arms after shape

optimization. Geometric details can be well-preserved

on the resultant model as our optimization is taken

939

Fig. 7. Physical models fabricated by FDM using MakerBot Replicator
3D printer: (left-two) an original model and (right-two) a model after
applying our shape optimization. The supporting structures are generated
by MeshMixer.

Fig. 8. Inconsistency rotation taken on neighboring tetrahedra leads to
an unnatural optimization result – the left paw and the forearm of the
Dinasaurus model are rotated into different directions in the local step of
shape optimization: (left) the input and (right) the result.

on the volumetric mesh and the resultant deformation

is transferred to the input mesh M with the help of

barycentric coordinates as what we did in [12].

The physical tests of fabrication using single material is taken

on the MakerBot Replicator 2 FDM machine. As shown in

Fig.7, the shape optimized by our method needs much less

supporting structures to make the model manufacturable.

B. Feature Preservation

Our direct minimal rotation computation is based on the

faces of an input model. When a very dense volumetric mesh

surface is employed, this may introduce a problem of incon-

sistency that some neighboring tetrahedra may be driven to

opposite direction by the faces inside. An unnatural result

can be obtained from the optimizer (see Fig.8). This happens

because the minimal rotations are computed separately on

each tetrahedron without considering the coherence between

neighboring regions. To overcome this problem, we introduce

a tool to interactively specify and therefore automatically

preserve global features on an input model.

Interactive Tool: In our framework, users are allowed to

select some parts of the volumetric mesh to be computed

as a whole. The minimal rotations of all tetrahedra in this

selected region are enforced to be the same so that avoids

the aforementioned problem of inconsistency. Specifically, a

common R(r̂, θ) is computed from all the faces on M falling

in this region. Incremental LP is first applied. If there is no

solution, we will use the K-means clustering method to find

an approximate solution to serve as the common rotation.

With the help of user’s input, the global feature of left-

arm on the Dinosaurus model can be well preserved in the

orientation-driven shape optimization. As demonstrated in

Fig. 9. The global feature can be simply selected and preserved during
the shape optimization.

Fig. 10. The global feature can be specified and preserved in our
framework: (a) the input Dinosaurus model, (b) the result without specifying
global feature and (c) a better result with the whole shape of left-arm
preserved. When the left-arm is bended unnaturally, more support needs
to be added (see the circled region in (b)).

Fig.9, the shape of left-arm can be preserved after selecting

the related region as a global feature. Comparing to the result

shown in Fig.8, the unnatural bending has been successfully

removed. More than that, additional supporting structures

need also to be added at the forearm (see Fig.10(b)) compar-

ing to a better result (see Fig.10(c)) with only support at the

paw. The supports are generated by the method presented

in [15], which is a variant of [16]. To further verify the

result, we also use MeshMixer [14] to generate supporting

structures. As a result, the number of APs produced by

MeshMixer is reduced from 97 on the input model to 56
on the optimized model (i.e., having 42.3% reduction) – see

Fig.11.

C. About Shape Approximation Error

To quantify the accuracy of the shape approximation error

produced by the area-weighted K-means clustering, a metric

needs to be defined. We adopt the ratio of area that cannot

be represented by our shape proxy within a certain error.

Specifically, for a face with normal n̂i, the face is defined

as well-approximated when n̂i · ĉk ≤ cos(αmax) with ĉk
denoting its proxy. Otherwise, it is considered as having

significant-variation from the proxy. Here, the threshold

for classification is defined as value relating to the self-

supporting angle as the facing-down angle within such angle

can be neglected during the fabrication. The metric of shape

approximation error (AE) is defined as the percentage of the

summed area of faces having significant-variation in terms

of the total surface area on the input model.

Keep it in mind that if we can directly get a solution

from the incremental LP solver in the first step, it means

all the normals are their own proxy – no approximation

error is introduced. Fig.12 shows the AE of other two

examples – Dinosaurus (left) and Armadillo (right) during

940

Fig. 11. Result of shape optimization on the Dinosaurus model: (left) the
input model needs to add supports with 29 APs and (right) the optimized
model and its supporting structure with 19 APs – that is 34.5% reduction.

Fig. 12. Charts to show the approximation error during the iterations of
shape optimization – the percentage of total area that cannot be represented
by their proxies: (left) the Dinosaurus example and (right) the Armadillo
example.

iterations. It can easily observed that AE is bounded during

the optimization. This verifies the effectiveness of our direct

computation approach. Moreover, we can also conclude that

the simpler a given model is and the denser the volumetric

mesh (as computation domain) is, the less approximation

error can be observed. For example, shape of the Bunny

model in Fig.6 is simple and the computation domain is very

dense, so that the approximation error is nearly during the

iterations.

V. CONCLUSION

In this paper, we present an approach based on incremental

LP and K-means clustering to compute minimal rotation

for a tetrahedron to reduce the need of adding support for

polygonal faces inside this tetrahedron. With the help of

this algorithm, the shape optimization for slimming support

structure in AM can be directly driven by the orientations of

faces on the input model M. As a result, the effectiveness

of optimization is less effected by the similarity of the vol-

umetric mesh to M. The volumetric mesh for computation

can be more easily obtained – e.g., by directly splitting the

voxel-set. This extension of our prior work [2] provides a

very useful tool for designers to automate the optimization

for manufacturability at the early stage of their design. In

short, designers can use this tool to adjust the shape of his

design during the whole process. This avoids the scenario

that he suddenly finds at the end stage of design that his final

design can only be fabricated after adding many supporting

structures at the regions having high requirement of the

surface quality.

ACKNOWLEDGMENT

This work is partially supported by Hong Kong RGC Gen-

eral Research Fund (CUHK/14207414) and Natural Science

Foundation of China (Ref. No.: 61432003).

REFERENCES

[1] K. G. Swift and J. D. Booker, Manufacturing Process Selection

Handbook. Elsevier Ltd., 2013.
[2] K. Hu, S. Jin, and C. C. L. Wang, “Support slimming for single mate-

rial based additive manufacturing,” Computer-Aided Design, vol. 65,
pp. 1–10, 2015.

[3] L. Lu, A. Sharf, H. Zhao, Y. Wei, Q. Fan, X. Chen, Y. Savoye,
C. Tu, D. Cohen-Or, and B. Chen, “Build-to-last: Strength to weight
3d printed objects,” ACM Trans. Graph., vol. 33, no. 4, 2014.

[4] A. N. Christiansen, J. A. Brentzen, M. Nobel-Jrgensen, N. Aage,
and O. Sigmund, “Combined shape and topology optimization of 3D
structures,” Computers & Graphics, vol. 46, pp. 25–35, 2015.

[5] R. Prévost, E. Whiting, S. Lefebvre, and O. Sorkine-Hornung, “Make
it stand: Balancing shapes for 3d fabrication,” ACM Trans. Graph.,
vol. 32, no. 4, pp. 81:1–81:10, 2013.

[6] M. Bacher, E. Whiting, B. Bickel, and O. Sorkine-Hornung, “Spin-
it: Optimizing moment of inertia for spinnable objects,” ACM Trans.

Graph., vol. 33, no. 4, 2014.
[7] N. Umetani and R. Schmidt, “Cross-sectional structural analysis for

3d printing optimization,” in SIGGRAPH Asia 2013 Technical Briefs,
2013, pp. 5:1–5:4.

[8] T. Igarashi, T. Moscovich, and J. F. Hughes, “As-rigid-as-possible
shape manipulation,” ACM Trans. Graph., vol. 24, no. 3, pp. 1134–
1141, 2005.

[9] O. Sorkine and M. Alexa, “As-rigid-as-possible surface modeling,”
in Proceedings of the Fifth Eurographics Symposium on Geometry

Processing (SGP’07), 2007, pp. 109–116.
[10] S. Bouaziz, M. Deuss, Y. Schwartzburg, T. Weise, and M. Pauly,

“Shape-up: Shaping discrete geometry with projections,” Comp.

Graph. Forum, vol. 31, no. 5, pp. 1657–1667, 2012.
[11] R. Brouet, A. Sheffer, L. Boissieux, and M.-P. Cani, “Design pre-

serving garment transfer,” ACM Trans. Graph., vol. 31, no. 4, pp.
36:1–36:11, 2012.

[12] T.-H. Kwok and C. Wang, “Shape optimization for human-centric
products with standardized component,” Computer-Aided Design,
vol. 52, pp. 51–63, 2014.

[13] G. Guennebaud and B. Jacob, “Eigen 3.2,” http://eigen.tuxfamily.org,
2013.

[14] Autodesk, “MeshMixer 2.7,” http://www.meshmixer.com, 2014.
[15] P. Huang, C. C. L. Wang, and Y. Chen, “Algorithms for layered

manufacturing in image space,” in ASME Advances in Computers and

Information in Engineering Research, 2014.
[16] Y. Chen, K. Li, and X. Qian, “Direct geometry processing for tele-

fabrication,” ASME Journal of Computing and Information Science in

Engineering, vol. 13, p. 041002, 2013.

941

