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Abstract—This paper presents a real-time interpolation 

method along non-uniform rational B-spline (NURBS) curves 
which have been used by CNC systems. The development of 
NURBS interpolator promises modern manufacturing system to 
machine arbitrary geometries with great relief of the data-flow 
bottleneck. In this interpolation algorithm, an Adams-Bashforth 
method is used as a predictor to predict the next trajectory point 
on the NURBS curve and an adaptive corrector is proposed so 
that a specified deviation between the command feedrate and 
the desired feedrate is met. The convergent condition for the 
algorithm is presented and demonstrated. Both simulation and 
experimental results for the NURBS interpolation are employed 
to verify the feasibility of the algorithm and comparison with 
first and second order of Taylor’s expansion method is provided 
to reveal the accuracy of this proposed algorithm. 
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I. INTRODUCTION 
n conventional CNC systems, the desire free-form curves 

and surfaces are generally achieved by the approximation 
of  a series of straight line or circular segments jointed 

end-by-end. However, the approximation will generate a 
huge number of data and increase the load of the CNC 
systems in order to meet the machining accuracy. It will cause 
the motion speed and acceleration unsmooth due to the 
discontinuity of the segments. As a result, there is an 
increasing need for developing a novel interpolator to 
overcome these disadvantages. A wide variety of parametric 
curves have been proposed to be used for the interpolation [1] 
[2]. As the most representative one, the non-uniform rational 
B-splines, commonly refers to as NURBS, has become the 
industry standard for the representation, design, and data 
exchange of geometric information processed by computers. 
Many national and international standards, e.g., IGES, STEP 
and PHIGS, recognize NURBS as powerful tools for 
geometric design [3]. Its particular mathematical properties 
allow a complex contour to be presented using only a few 
parameters, by which CNC systems are greatly benefited. A 
higher accuracy than the conventional interpolation can be 
obtained since it can be executed directly without any 
segmentation. Moreover, the amounts of program blocks can 

be greatly reduced while maintain a high accuracy instead of 
choosing an appropriate tradeoff between the accuracy and 
data volume.  

 
Several investigations have been made to develop 

real-time interpolators for the parametric curve. Bedi et al. [4] 
developed a uniform interpolation algorithm in which the 
independent variable was constantly increasing. Although the 
algorithm was simple and its segment length in each period 
was unequal, it could not provide constant feedrate for 
machining process. Shpitalni et al. [5] gave a parametric 
curve interpolator with its segmentation based on curve 
segments of equal length rather than equal independent 
variable increment. In order to calculate the next trajectory 
point, Shpitalni et al. used Taylor’s first order expansion 
method which guaranteed a constant feedrate. Subsequently, 
Yang and Kong [1] and Yeh and Hsu [9] got more accurate 
results by extending Taylor series coefficients into the second 
order. These algorithms based on Taylor’s expansion method 
developed real-time interpolators for general curves; however, 
they did not accurately achieve the desired goal since their 
systems were open-looped. In order to overcome this 
drawback, Tsai et al. [7] presented a predictor-corrector 
interpolator for parametric curves in which Tsai used the 
backward difference approximation method to predict the 
next trajectory point, and then corrected it with the current 
feedrate command feedback compensation scheme by which 
the deviations between the current and desired feedrate 
commands would always fall within the specified tolerance. 
The method could reach more accuracy, and also brought 
unexpected fluctuation to the feedrate. 

This study presents a self-adjustment interpolator for 
parametric curves and allows us to calculate the next 
trajectory point rapidly and accurately. This proposed method 
uses Adams-Bashforth method to initially estimate the next 
trajectory point which subsequently determines the current 
feedrate. If the ratio of current feedrate and desired feedrate 
overrides a pre-specified feedrate tolerance, the corrector will 
be in action to adjust the next trajectory point automatically 
according to the current feedrate feedback until an acceptable 
ratio error is met.  
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II. REAL-TIME INTERPOLATOR FOR NURBS 

A. Definition of NURBS curves 
In 3-dimensions space, all points on a curve in 

parametric form are represented by 3 coordinates separately 
as an explicit function 

))(),(),(()( uzuyuxuC =     bua ≤≤  
where C(u) is a vector-valued function of the independent 
variable, u is an arbitrary independent parameter usually 
normalized to [0,1]. 

A p-th degree NURBS curve is defined by [3] 
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where {Pi} are control points, {wi}are weights, and {Ni,p(u)} 
are the p-th degree B-spline basis functions defined on 
non-periodic (and non-uniform) knot vector 
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and Ni,p(u) can be defined by the recursive formula 
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The m-th derivative of the NURBS with respect to u can 
be obtained by taking the derivative of Eq. (1) 
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where the m-th derivative of basis function can be produced 
as 
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B. Conventional interpolator 
The essence of a real-time interpolator is that the tool 

path machined in each sampling period T should be based on 
the equal increment of the segment length rather than the 
equal increment of the independent parameter uΔ . The 
federate V(t) along the NURBS curve is defined by 

( ) ds ds duV t
dt du dt
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Substituting Eq. (3) into Eq. (2) yields 
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Although our goal is to get the value of u at an arbitrary 
time t, it is difficult to obtain the closed-form solution of Eq. 
(4). In practice, alternatively, a recursive solution based on 
Taylor’s expansion around t =KT can be accepted 
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The second order derivative of u with respect to t is 
denoted 
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Substituting Eq. (4) and Eq. (6) into Eq. (5) yields the 
equation of 3-dimension parametric curve interpolator based 
on second order Taylor’s expansion: 
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Form Eq. (7), the value of the next trajectory point on the 
curve C(u) at the time tk+1can be calculated by the current 
value of uk and the first and second order derivative of the 
current position(xk, yk, zk) with respect to the independent 
parameter u. Repeat this process, a vector of u (0 ≤ u ≤ 1) is 
obtained to determine a parametric curve with its 
segmentation based on the equal increment of the segments 
length. However, this widespread used method is an 
open-loop method by which feedrate can greatly deviate from 
the desired one. To overcome this drawback, a close-loop 
adaptive Adams-Bashforth method is proposed to generate 
the value of uk+1 so that the feedrate can be limited in a 
tolerance range. 
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Fig. 1.  Flowchart of the adaptive interpolator. 

 

C. Adaptive interpolator 
The concept of the feedback in interpolation is firstly 

introduced by Lo [16] who used the desired feedrate and the 
current federate. This approach enables users to repeatedly 
update the value of uk until the current feedrate falls into the 
tolerance range. The flowchart of adaptive scheme is shown 
in Fig. 1. 

The first step is to predict the next trajectory point. For 
simplification, Eq. (2) can be written as 

( ) ( )
/

du V t f u
dt ds du

= =                                                        (8) 

A numerical algorithm Adams-Bashforth method [17] is 
used to solve Eq. (8) by which the predicted estimation of uk+1 
can be derived by 
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where T is the time intervals.. 
The value of u0, u1, u2 and u3 have to be determined in 

advance to use Eq. (9). Here, u0 is set to be zero, u1, u2 , u3 are 
given by the fourth order Runge-Kutta method 
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The second step is to obtain a corrected estimate of uk+1. 
The ratio of the current feedrate and the desired feedrate is 
adopted as a proportional factor to adjust uk+1 so that the 
resulting current feedrate can get proximately with the 
desired one. 
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where Vk is the desired feedrate at time tk, vk
(n-1) is the resulting 

feedrate after n-1 iterations, which is defined as 
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Let ( )1( 1) nn
k k kv V Vε −− = −  be the feedrate error after n-1 

iterations, ε is the specified feedrate tolerance, the terminated 
condition for the iteration is  

εε ≤− )1(n                                                                     (13) 

Thus, the proposed algorithm achieves the specified 
feedrate accuracy by the two steps provided above. In order to 
terminate the iteration, the terminated condition must be met 
after several times of the iteration and it requires the time 
intervals T to be satisfied with the convergent condition 
which is presented in the next section. 

D. Convergent condition 
The function iteration will not converge unless a tiny 

step size T is used [18]. However, small T will bring some 
undesirable drawbacks such as enormous data size. The 
tradeoff between the convergence and computation becomes 
an issue. In the section, we will find a bound value of T within 
which the convergent condition is always to be satisfied. 

Consider the values of uk+1 at n and n-1 times of iteration 
deriving by Eq. (11) 
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Subtracting (15) from (14) yields 
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then Eq. (17) can be derived as follows from Eq. (16) 
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Denote h=uk+1-uk, the derivative of C(u) with respect to u 
at uk+1 is defined as 
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Eq. (17) can be written as 
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Since 1 ( )C u′ has a bounded first order derivative, from 

Lipschitz function 
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Substituting Eq. (19) into Eq. (18) yields 
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By repeating this process, Eq. (21) can be obtained 
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Let L denote the maximum value of Li 
( 1,,2,1 −= ni K ), Eq. (21) can be expressed as 
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1
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convergent when TVkL is under the convergent condition 
TVkL＜1. Assume L occurs after k times of iteration, written 
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As a result, Eq. (22) is the convergent condition for the 
adaptive interpolator, if it is satisfied, then 

( ) ( )1
1 1 0n n

k ku u −
+ +− → when ∞→n , from Eq. (11) the proximity of 

feedrate ( )1n
k kv V− → can be achieved eventually. 

III. SIMULATION RESULTS 
The evaluation of the conventional interpolator and 

adaptive interpolator along a NURBS curve is measured by 
using simulation results based on the feedrate profile error. 
Fig. 2 shows a NURBS tool path with its control points, the 
weight vector and knot vector are given as 

Control points: (0,0), (－100,－100), (－100,100) (0,0) 
(100,－100) (100,100) (0,0), 

Weight vector: [5, 5, 10, 1, 10, 5, 5], 
   Knot vector: [0, 0, 0, 0.25, 0.5, 0.5, 0.75, 1, 1, 1]. 

The length of the tool path is calculated by Simpson’s 
rule. In this case, the total length is S = 679.5234 mm. 
Considering the convergent condition, sampling time is 
chosen as T= 0.008 s. A trapezoidal feedrate profile is 
adopted as the desired feedrate with the maximum federate 
V= 100 mm/s, acceleration A= 150 mm/s2. The feedrate 
tolerance is specified as ε = 1 mm/s. 

 
Fig. 2.  NURBS curve 

 
By the parameters specified above, total interpolation 

time can be calculated as Ttotal=S/V+V/A =7.4619s. Table 1 
reveals the simulation results using Taylor’s expansion 
method and adaptive ABM. The interpolation feedrate based 
on these methods and their errors comparing with the desired 
feedrate are shown in Fig. 3.  

Table 1 Simulation results for discussed interpolators (mm/s) 

 1st order 
Taylor 

2nd order 
Taylor 

Adaptive 
ABM 

Max feedrate 5.5303 3.4747 1.7198 
Min feedrate -6.379 -4.557 -1.351 

From Fig.3 it can be concluded that the interpolator 
based on the second order Taylor’s expansion performed a 
better quality than that based on first order Taylor’s 
expansion. In contrast with the Taylor’s method by which 
error can just be controlled by adjusting step size, the 
adaptive ABM algorithm can limit the feedrate error in a 
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pre-specified range. As a result, the demand for the different 
feedrate accuracy can be satisfied. 

 

Fig. 3  Feedrate profiles and feedrate errors 

IV. EXPERIMENT RESULTS 
The experimental setup of an X-Y table is used to verify 

the practical application of the adaptive ABM algorithm. This 
platform is developed using a motion control board with a TI 
TMS320F2812 DSP which would perform advanced 
capabilities of both calculation and motion control in 
real-time. Program code of NURBS expressions, feedrate 
planning, and interpolation algorithm companied with the 
motion control are written in C language and executed by the 
DSP. Grating measurements are used to detect transient 
position of the X-Y table along X, Y direction respectively to 
practice adaptive interpolation.  

The X-Y table is driven by two DC servo motors, and 
each motor performs a resolution of 4000 steps per revolution. 
Position feedback is practiced by grating measurements with 
the pitch of screw in both X and Y directions are 16 mm. 
Other parameters of the interpolator is set as follows 

The maximum feedrate: V= 100 mm/s; 
Acceleration: A= 150 mm/s2, 
Sampling time: T= 0.008 s, 
Feedrate tolerance: ε = 3 mm/s. 
The resulting tool path (shown in Fig. 4) is obtained by 

the grating measurements and the interpolation feedrate is 
derived from dividing the length between two adjacent 
trajectory points by the interpolation interval. Interpolation 
by the first and second order of Taylor’s expansion is 
experimented to provide a comparative result by giving an 
inferior performance to that of interpolation by adaptive 
Adams-Bashforth algorithm. Table 2 shows the experimental 
results using Taylor’s expansion method and adaptive ABM 
respectively. The contour error and feedrate profile 
performed by using first and second order Taylor’s expansion 
and adaptive ABM are depicted in Fig. 5-Fig. 7. 

 
Fig. 4  Desired contour (dashed) and resulting contour 

(solid) with adaptive ABM 

Table 2 Experimental results for discussed interpolators 

 1st order 
Taylor 

2nd order 
Taylor 

Adaptive 
ABM 

Max couture 
error(mm) 0.7097 0.465 0.1653 

Max feedrate 
error(mm/s) 7.7524 6.3433 3.2118 

As mentioned above, the convergent condition for 
adaptive algorithm is that the interpolation interval must be 
limited in a specified range determined by the desired 
feedrate for a definite trajectory. Nevertheless, since the 
interpolation process is in real-time, besides enormous data 
size, small interpolation interval would cause other disastrous 
consequences. At each interpolation period, adaptive 
Adams-Bashforth method is adopted to calculate the next 
trajectory point meanwhile X-Y table is still running at the 
feedrate calculated in the last interpolation period. Assume 
the interpolation interval is too small or the feedrate is too 
large, the current point obtained from grating measurements 
may have gone beyond the next trajectory point calculated in 
an interpolation period, in this condition the iteration will 
never be convergent. 

 
Fig. 5  Contour error and feedrate profile using first 

order Taylor’s expansion method 
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Fig. 6  Contour error and feedrate profile using second 
order Taylor’s expansion method 

 

Fig. 7  Contour error and feedrate profile using 
second order Taylor’s expansion method 

V. CONCLUSION 
For free-form curve, the essential of interpolation is to 

keep in real-time and achieve expected accuracy. This paper 
proposed an effective method to predict and correct the next 
trajectory point in real-time. Since the deviation between 
current feedrate and the desired feedrate is pre-determined, 
the specified accuracy is ensured by this adaptive interpolator. 
Simulation and experimental results show that the adaptive 
interpolator tracks a more accurate tool path by providing an 
access to control feedrate deviation which is uncontrollable 
by using conventional Taylor’s expansion method. 

VI. REFERENCES 
[1] D.C.H. Yang and T.Kong, “Parametric interpolator versus linear 

interpolator for precision CNC machining”. Computer-Aided Design, 
vol. 26, 1994, pp 225-234 

[2] Rida T. Farouki, Carla Manni, Alessandra Sestini, “Real-time CNC 
interpolators for Bezier conics”. Computer Aided Geometric Design 
vol. 18, 2001, pp 639-655 

[3] Piegl L, Tiller W, The NURBS Book, 2nd edn. Springer. Berlin 
Heidelberg New York, 1997 

[4] S. Bedi, I. Ali, N. Quan, “Advanced techniques for CNC machine”. 
Engineering for Industry, vol. 115, 1993, pp 329-336 

[5] M. Shpitalni, Y. Koren, C.C.Lo, “Realtime curve interpolators”. 
Computer-Aided Design vol. 26, 1994, pp 832-838 

[6] R.F.Farouki, Y.F.Tsai, “Exact Taylor series coefficient for 
variable-feedrate CNC curve interpolator”. Computer-Aided Design 
vol. 33, 2001, pp 155-165 

[7] M.C.Tsai, C.W.Cheng, “A real-time predictor-corrector interpolator for 
CNC machining”. J. Manuf. Sci. Eng. vol. 125, 2003, pp  449-460 

[8] Q.G.Zhang, R.B.Greenway, “Development and implementation of a 
NURBS curve motion interpolator”. Robotics and Computer-Integrated 
Manufacturing vol.14, 1998, pp 27-36 

[9] S.S.Yeh, P.L.Hsu, “The speed-controlled interpolator for machining 
parametric curves”. Computer-Aided Design vol. 31, 1999, pp 349-357  

[10] H.T.Yau, J.B.Wang, “Fast Bezier interpolator with real-time 
look-ahead function for high-accuracy machining”, Int. J. Mach. Tools 
Manuf. vol. 47, 2007, pp 1518-1529  

[11] K.Erkorkmaz, Y.Altintas, “High speed CNC system design”. Int. J. 
Mach. Tools Manuf. vol. 41, 2001, pp 1323-1345  

[12] W.T.Lei, M.P.Sung, L.Y.Lin, J.J.Huang, “Fast real-time NURBS path 
interpolation for CNC machine tools”. Int. J. Mach. Tools Manuf. vol. 
47, 2007, pp 1530-1541  

[13] S.S.Yeh, P.L.Hsu, “Adaptive-feedrate interpolation for parametric 
curves with a confined chord error”. Computer-Aided Design vol. 34, 
2002, pp 229-237  

[14] T.Yong, R.Narayanaswami, “A parametric interpolator with confined 
chord errors, acceleration and deceleration for NC machining”. 
Computer-Aided Design vol. 35, 2003, pp 1249-1259  

[15] J.Y.Lai, K.Y.Lin, S.J.Tseng, W.D.Ueng,  “On the development of a 
parametric interpolator with confined chord error, feedrate, acceleration 
and jerk”. Int J Adv Manuf Technol. Doi:  10.1007/s00170-007-0954-7, 
2007 

[16] C.C. Lo, “Feedback command generators for CNC machine tools”. J. 
Manuf. Sci. Eng. vol. 119, 1997, pp 587-592 

[17] W.W.Yang, W.W.Cao, T.S.Chung, J.Morris, Applied Numerical 
Methods Using MATLAB. John Wiley & Sons, Inc., Hoboken, New 
Jersey. 2005 

[18] D.I.Kim, J.W.Jeon, S.kim, “software acceleration deceleration methods 
for industrial robots and CNC machine tools”. Mechatronics vol. 4, 
1994, pp 37-53 

[19] K.S.Fu, R.C.Gonzalez, C.S.G.Lee, Robotics: Control, Sensing, Vision 
and Interlligence. McGraw-Hill. New York. 1997 

1985


